Nikon D7100 vs. Leica V-Lux 4

Comparison

change cameras »
D7100 image
vs
V-Lux 4 image
Nikon D7100 Leica V-Lux 4
check price » check price »
Megapixels
24.10
12.10
Max. image resolution
6000 x 4000
4000 x 3000

Sensor

Sensor type
CMOS
CMOS
Sensor size
23.5 x 15.6 mm
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
6032 x 3995
4011 x 3016
Diagonal
28.21 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
12.88 : 1
(ratio)
Nikon D7100 Leica V-Lux 4
Surface area:
366.60 mm² vs 28.46 mm²
Difference: 338.14 mm² (1188%)
D7100 sensor is approx. 12.88x bigger than V-Lux 4 sensor.
Pixel pitch
3.9 µm
1.54 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.36 µm (153%)
Pixel pitch of D7100 is approx. 153% higher than pixel pitch of V-Lux 4.
Pixel area
15.21 µm²
2.37 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 12.84 µm² (542%)
A pixel on Nikon D7100 sensor is approx. 542% bigger than a pixel on Leica V-Lux 4.
Pixel density
6.59 MP/cm²
42.4 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 35.81 µm (543%)
Leica V-Lux 4 has approx. 543% higher pixel density than Nikon D7100.
To learn about the accuracy of these numbers, click here.

Specs

Nikon D7100
Leica V-Lux 4
Crop factor
1.53
5.62
Total megapixels
24.71
12.80
Effective megapixels
24.10
12.10
Optical zoom
24x
Digital zoom
No
Yes
ISO sensitivity
Auto, 100 - 6400, Hi-1 (ISO 12800), Hi-2 (ISO 25600)
Auto, 100, 200, 400, 800,1600, 3200, 6400
RAW
Manual focus
Normal focus range
30 cm
Macro focus range
1 cm
Focal length (35mm equiv.)
25 - 600 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8
Max. aperture (35mm equiv.)
n/a
f15.7
Metering
Matrix, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
60 sec
Max. shutter speed
1/8000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Optical (pentaprism)
Electronic
White balance presets
12
5
Screen size
3.2"
3"
Screen resolution
1,228,800 dots
460,000 dots
Video capture
Max. video resolution
1920x1080 (60i/50i/30p/25p/24p)
1920x1080 (60p/60i/30p)
Storage types
SD/SDHC/SDXC x 2
SD/SDHC/SDXC, Internal
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion EN-EL15 rechargeable battery
Lithium-Ion rechargeable battery
Weight
675 g
590 g
Dimensions
135.5 x 106.5 x 76 mm
125.2 x 86.6 x 110.2 mm
Year
2013
2012



Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nikon D7100 diagonal

w = 23.50 mm
h = 15.60 mm
Diagonal =  23.50² + 15.60²   = 28.21 mm

Leica V-Lux 4 diagonal

The diagonal of V-Lux 4 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

D7100 sensor area

Width = 23.50 mm
Height = 15.60 mm

Surface area = 23.50 × 15.60 = 366.60 mm²

V-Lux 4 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

D7100 pixel pitch

Sensor width = 23.50 mm
Sensor resolution width = 6032 pixels
Pixel pitch =   23.50  × 1000  = 3.9 µm
6032

V-Lux 4 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4011 pixels
Pixel pitch =   6.16  × 1000  = 1.54 µm
4011


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

D7100 pixel area

Pixel pitch = 3.9 µm

Pixel area = 3.9² = 15.21 µm²

V-Lux 4 pixel area

Pixel pitch = 1.54 µm

Pixel area = 1.54² = 2.37 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

D7100 pixel density

Sensor resolution width = 6032 pixels
Sensor width = 2.35 cm

Pixel density = (6032 / 2.35)² / 1000000 = 6.59 MP/cm²

V-Lux 4 pixel density

Sensor resolution width = 4011 pixels
Sensor width = 0.616 cm

Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

D7100 sensor resolution

Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 24.10
r = 23.50/15.60 = 1.51
X =  24.10 × 1000000  = 3995
1.51
Resolution horizontal: X × r = 3995 × 1.51 = 6032
Resolution vertical: X = 3995

Sensor resolution = 6032 x 3995

V-Lux 4 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.10
r = 6.16/4.62 = 1.33
X =  12.10 × 1000000  = 3016
1.33
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016

Sensor resolution = 4011 x 3016


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


D7100 crop factor

Sensor diagonal in mm = 28.21 mm
Crop factor =   43.27  = 1.53
28.21

V-Lux 4 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

D7100 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Nikon D7100, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Nikon D7100 is 1.53

V-Lux 4 equivalent aperture

Crop factor = 5.62
Aperture = f2.8

35-mm equivalent aperture = (f2.8) × 5.62 = f15.7

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.