Olympus SP-100 vs. Kodak PixPro AZ522

Comparison

change cameras »
SP-100 image
vs
PixPro AZ522 image
Olympus SP-100 Kodak PixPro AZ522
check price » check price »
Megapixels
16.00
16.38
Max. image resolution
4608 x 3456
4608 x 3456

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4612 x 3468
4667 x 3509
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Olympus SP-100 Kodak PixPro AZ522
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
SP-100 and AZ522 sensors are the same size.
Pixel pitch
1.34 µm
1.32 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.02 µm (2%)
Pixel pitch of SP-100 is approx. 2% higher than pixel pitch of AZ522.
Pixel area
1.8 µm²
1.74 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.06 µm² (3%)
A pixel on Olympus SP-100 sensor is approx. 3% bigger than a pixel on Kodak AZ522.
Pixel density
56.06 MP/cm²
57.4 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 1.34 µm (2%)
Kodak AZ522 has approx. 2% higher pixel density than Olympus SP-100.
To learn about the accuracy of these numbers, click here.



Specs

Olympus SP-100
Kodak AZ522
Crop factor
5.62
5.62
Total megapixels
16.79
Effective megapixels
16.00
16.38
Optical zoom
50x
52x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 125, 200, 400, 800, 1600, 3200, 6400
Auto, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
7 cm
60 cm
Macro focus range
1 cm
1 cm
Focal length (35mm equiv.)
24 - 1200 mm
24 - 1248 mm
Aperture priority
Yes
Yes
Max. aperture
f2.9 - f6.5
f2.8 - f5.6
Max. aperture (35mm equiv.)
f16.3 - f36.5
f15.7 - f31.5
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/1700 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
4
6
Screen size
3"
3"
Screen resolution
460,000 dots
460,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
1920x1080 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
LI-92B lithium-ion battery
Rechargeable Li-ion Battery LB-060
Weight
589 g
530 g
Dimensions
121.2 x 91.3 x 133.2 mm
118.9 x 88.9 x 97.5 mm
Year
2014
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Olympus SP-100 diagonal

The diagonal of SP-100 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Kodak AZ522 diagonal

The diagonal of AZ522 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

SP-100 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

AZ522 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

SP-100 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.16  × 1000  = 1.34 µm
4612

AZ522 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4667 pixels
Pixel pitch =   6.16  × 1000  = 1.32 µm
4667


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

SP-100 pixel area

Pixel pitch = 1.34 µm

Pixel area = 1.34² = 1.8 µm²

AZ522 pixel area

Pixel pitch = 1.32 µm

Pixel area = 1.32² = 1.74 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

SP-100 pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm

Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²

AZ522 pixel density

Sensor resolution width = 4667 pixels
Sensor width = 0.616 cm

Pixel density = (4667 / 0.616)² / 1000000 = 57.4 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

SP-100 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468

AZ522 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.38
r = 6.16/4.62 = 1.33
X =  16.38 × 1000000  = 3509
1.33
Resolution horizontal: X × r = 3509 × 1.33 = 4667
Resolution vertical: X = 3509

Sensor resolution = 4667 x 3509


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


SP-100 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

AZ522 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

SP-100 equivalent aperture

Crop factor = 5.62
Aperture = f2.9 - f6.5

35-mm equivalent aperture = (f2.9 - f6.5) × 5.62 = f16.3 - f36.5

AZ522 equivalent aperture

Crop factor = 5.62
Aperture = f2.8 - f5.6

35-mm equivalent aperture = (f2.8 - f5.6) × 5.62 = f15.7 - f31.5

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.