Sony Cyber-shot DSC-WX300 vs. Nikon Coolpix S9400

Comparison

change cameras »
Cyber-shot DSC-WX300 image
vs
Coolpix S9400 image
Sony Cyber-shot DSC-WX300 Nikon Coolpix S9400
check price » check price »
Megapixels
18.20
18.10
Max. image resolution
4896 x 3672
4896 x 3672

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4920 x 3699
4906 x 3689
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Sony Cyber-shot DSC-WX300 Nikon Coolpix S9400
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
WX300 and S9400 sensors are the same size.
Pixel pitch
1.25 µm
1.26 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.01 µm (0.8%)
Pixel pitch of S9400 is approx. 0.8% higher than pixel pitch of WX300.
Pixel area
1.56 µm²
1.59 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.03 µm² (2%)
A pixel on Nikon S9400 sensor is approx. 2% bigger than a pixel on Sony WX300.
Pixel density
63.79 MP/cm²
63.43 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 0.36 µm (0.6%)
Sony WX300 has approx. 0.6% higher pixel density than Nikon S9400.
To learn about the accuracy of these numbers, click here.



Specs

Sony WX300
Nikon S9400
Crop factor
5.62
5.62
Total megapixels
18.90
18.91
Effective megapixels
18.20
18.10
Optical zoom
20x
18x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600, 3200, (12800 with boost)
ISO 125-1600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
5 cm
1 cm
Focal length (35mm equiv.)
25 - 500 mm
25 - 450 mm
Aperture priority
No
No
Max. aperture
f3.5 - f6.5
f3.4 - f6.3
Max. aperture (35mm equiv.)
f19.7 - f36.5
f19.1 - f35.4
Metering
Multi, Center-weighted, Spot
Matrix, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
Max. shutter speed
1/6000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
Screen size
3"
3"
Screen resolution
460,800 dots
614,000 dots
Video capture
Max. video resolution
1920x1080 (50i)
Storage types
SD/SDHC/SDXC/Memory Stick Duo/Memory Stick Pro Duo, Memory Stick Pro-HG Duo
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Rechargeable Battery Pack (NP-BX1)
Rechargeable Li-ion Battery EN-EL12
Weight
139 g
200 g
Dimensions
96 x 54.9 x 25.7 mm
110.1 x 60.3 x 30.7 mm
Year
2013
2013




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Sony WX300 diagonal

The diagonal of WX300 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Nikon S9400 diagonal

The diagonal of S9400 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

WX300 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

S9400 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

WX300 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4920 pixels
Pixel pitch =   6.16  × 1000  = 1.25 µm
4920

S9400 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4906 pixels
Pixel pitch =   6.16  × 1000  = 1.26 µm
4906


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

WX300 pixel area

Pixel pitch = 1.25 µm

Pixel area = 1.25² = 1.56 µm²

S9400 pixel area

Pixel pitch = 1.26 µm

Pixel area = 1.26² = 1.59 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

WX300 pixel density

Sensor resolution width = 4920 pixels
Sensor width = 0.616 cm

Pixel density = (4920 / 0.616)² / 1000000 = 63.79 MP/cm²

S9400 pixel density

Sensor resolution width = 4906 pixels
Sensor width = 0.616 cm

Pixel density = (4906 / 0.616)² / 1000000 = 63.43 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

WX300 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 18.20
r = 6.16/4.62 = 1.33
X =  18.20 × 1000000  = 3699
1.33
Resolution horizontal: X × r = 3699 × 1.33 = 4920
Resolution vertical: X = 3699

Sensor resolution = 4920 x 3699

S9400 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 18.10
r = 6.16/4.62 = 1.33
X =  18.10 × 1000000  = 3689
1.33
Resolution horizontal: X × r = 3689 × 1.33 = 4906
Resolution vertical: X = 3689

Sensor resolution = 4906 x 3689


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


WX300 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

S9400 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

WX300 equivalent aperture

Crop factor = 5.62
Aperture = f3.5 - f6.5

35-mm equivalent aperture = (f3.5 - f6.5) × 5.62 = f19.7 - f36.5

S9400 equivalent aperture

Crop factor = 5.62
Aperture = f3.4 - f6.3

35-mm equivalent aperture = (f3.4 - f6.3) × 5.62 = f19.1 - f35.4

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.