AgfaPhoto DC-833m vs. Panasonic Lumix DMC-S1

Comparison

change cameras »
DC-833m image
vs
Lumix DMC-S1 image
AgfaPhoto DC-833m Panasonic Lumix DMC-S1
check price » check price »
Megapixels
8.00
12.10
Max. image resolution
3264 x 2448
4000 x 3000

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor resolution
3262 x 2453
4011 x 3016
Diagonal
7.19 mm
7.60 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.12
(ratio)
AgfaPhoto DC-833m Panasonic Lumix DMC-S1
Surface area:
24.84 mm² vs 27.72 mm²
Difference: 2.88 mm² (12%)
S1 sensor is approx. 1.12x bigger than DC-833m sensor.
Note: You are comparing cameras of different generations. There is a 2 year gap between AgfaPhoto DC-833m (2009) and Panasonic S1 (2011). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.76 µm
1.52 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.24 µm (16%)
Pixel pitch of DC-833m is approx. 16% higher than pixel pitch of S1.
Pixel area
3.1 µm²
2.31 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.79 µm² (34%)
A pixel on AgfaPhoto DC-833m sensor is approx. 34% bigger than a pixel on Panasonic S1.
Pixel density
32.18 MP/cm²
43.52 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 11.34 µm (35%)
Panasonic S1 has approx. 35% higher pixel density than AgfaPhoto DC-833m.
To learn about the accuracy of these numbers, click here.



Specs

AgfaPhoto DC-833m
Panasonic S1
Crop factor
6.02
5.69
Total megapixels
12.70
Effective megapixels
12.10
Optical zoom
Yes
4x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600
Auto, 100, 200, 400, 800, 1600 - 6400
RAW
Manual focus
Normal focus range
40 cm
50 cm
Macro focus range
15 cm
10 cm
Focal length (35mm equiv.)
37 mm
28 - 112 mm
Aperture priority
No
No
Max. aperture
f2.8 - f5.2
f3.1 - f6.5
Max. aperture (35mm equiv.)
f16.9 - f31.3
f17.6 - f37
Metering
Centre weighted, Multi-segment, Spot
Intelligent Multiple
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
8 sec
Max. shutter speed
1/2000 sec
1/1600 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
6
Screen size
2.5"
2.7"
Screen resolution
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2x AA
Lithium-Ion rechargeable battery
Weight
120 g
100 g
Dimensions
89 x 61 x 27 mm
100.0 x 56.5 x 27.8 mm
Year
2009
2011




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

AgfaPhoto DC-833m diagonal

The diagonal of DC-833m sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Panasonic S1 diagonal

The diagonal of S1 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

DC-833m sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

S1 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

DC-833m pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3262 pixels
Pixel pitch =   5.75  × 1000  = 1.76 µm
3262

S1 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4011 pixels
Pixel pitch =   6.08  × 1000  = 1.52 µm
4011


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

DC-833m pixel area

Pixel pitch = 1.76 µm

Pixel area = 1.76² = 3.1 µm²

S1 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

DC-833m pixel density

Sensor resolution width = 3262 pixels
Sensor width = 0.575 cm

Pixel density = (3262 / 0.575)² / 1000000 = 32.18 MP/cm²

S1 pixel density

Sensor resolution width = 4011 pixels
Sensor width = 0.608 cm

Pixel density = (4011 / 0.608)² / 1000000 = 43.52 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

DC-833m sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 8.00
r = 5.75/4.32 = 1.33
X =  8.00 × 1000000  = 2453
1.33
Resolution horizontal: X × r = 2453 × 1.33 = 3262
Resolution vertical: X = 2453

Sensor resolution = 3262 x 2453

S1 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.10
r = 6.08/4.56 = 1.33
X =  12.10 × 1000000  = 3016
1.33
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016

Sensor resolution = 4011 x 3016


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


DC-833m crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

S1 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

DC-833m equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f5.2

35-mm equivalent aperture = (f2.8 - f5.2) × 6.02 = f16.9 - f31.3

S1 equivalent aperture

Crop factor = 5.69
Aperture = f3.1 - f6.5

35-mm equivalent aperture = (f3.1 - f6.5) × 5.69 = f17.6 - f37

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.