Canon Digital IXUS 65 vs. Nikon Coolpix P330
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon Digital IXUS 65 | Nikon Coolpix P330 | ||||
check price » | check price » |
Megapixels
6.00
12.20
Max. image resolution
2816 x 2112
4000 x 3000
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/1.7" (~ 7.53 x 5.64 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.71 |
(ratio) | ||
Canon Digital IXUS 65 | Nikon Coolpix P330 |
Surface area:
24.84 mm² | vs | 42.47 mm² |
Difference: 17.63 mm² (71%)
P330 sensor is approx. 1.71x bigger than IXUS 65 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 7 years between Canon IXUS 65 (2006) and Nikon P330 (2013).
Seven years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.7 µm² (20%)
A pixel on Canon IXUS 65 sensor is approx. 20% bigger than a pixel on Nikon P330.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon IXUS 65
Nikon P330
Total megapixels
6.20
12.76
Effective megapixels
6.00
12.20
Optical zoom
3x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80 ,100, 200, 400, 800
Auto, 100, 200, 400, 800, 1600, 2000, 3200, 6400, 12800
RAW
Manual focus
Normal focus range
30 cm
30 cm
Macro focus range
3 cm
3 cm
Focal length (35mm equiv.)
35 - 105 mm
24 - 120 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.9
f1.8 - f5.6
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
60 sec
Max. shutter speed
1/1500 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
5
Screen size
3"
3"
Screen resolution
173,000 dots
921,000 dots
Video capture
Max. video resolution
1920x1080 (60i/50i/30p/25p/24p)
Storage types
SD/MMC card
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-4L battery
Rechargeable Li-ion Battery EN-EL12
Weight
175 g
200 g
Dimensions
90 x 57 x 20 mm
103 x 58.3 x 32 mm
Year
2006
2013
Choose cameras to compare
Popular comparisons:
- Canon Digital IXUS 65 vs. Canon Digital IXUS 95 IS
- Canon Digital IXUS 65 vs. Canon IXUS 285 HS
- Canon Digital IXUS 65 vs. Canon DIGITAL IXUS 70
- Canon Digital IXUS 65 vs. Canon IXUS 230 HS
- Canon Digital IXUS 65 vs. Canon Digital IXUS 50
- Canon Digital IXUS 65 vs. Sony Mavica FD-100
- Canon Digital IXUS 65 vs. Canon IXUS 500 HS
- Canon Digital IXUS 65 vs. Canon Digital IXUS 100 IS
- Canon Digital IXUS 65 vs. Canon IXUS 105
- Canon Digital IXUS 65 vs. Fujifilm X20
- Canon Digital IXUS 65 vs. Canon Digital IXUS 980 IS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon IXUS 65 diagonal
The diagonal of IXUS 65 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Nikon P330 diagonal
The diagonal of P330 sensor is not 1/1.7 or 0.59" (14.9 mm) as you might expect, but approximately two thirds of
that value - 9.41 mm. If you want to know why, see
sensor sizes.
w = 7.53 mm
h = 5.64 mm
w = 7.53 mm
h = 5.64 mm
Diagonal = √ | 7.53² + 5.64² | = 9.41 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
IXUS 65 sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
P330 sensor area
Width = 7.53 mm
Height = 5.64 mm
Surface area = 7.53 × 5.64 = 42.47 mm²
Height = 5.64 mm
Surface area = 7.53 × 5.64 = 42.47 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
IXUS 65 pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2825 pixels
Sensor resolution width = 2825 pixels
Pixel pitch = | 5.75 | × 1000 | = 2.04 µm |
2825 |
P330 pixel pitch
Sensor width = 7.53 mm
Sensor resolution width = 4043 pixels
Sensor resolution width = 4043 pixels
Pixel pitch = | 7.53 | × 1000 | = 1.86 µm |
4043 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
IXUS 65 pixel area
Pixel pitch = 2.04 µm
Pixel area = 2.04² = 4.16 µm²
Pixel area = 2.04² = 4.16 µm²
P330 pixel area
Pixel pitch = 1.86 µm
Pixel area = 1.86² = 3.46 µm²
Pixel area = 1.86² = 3.46 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
IXUS 65 pixel density
Sensor resolution width = 2825 pixels
Sensor width = 0.575 cm
Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²
P330 pixel density
Sensor resolution width = 4043 pixels
Sensor width = 0.753 cm
Pixel density = (4043 / 0.753)² / 1000000 = 28.83 MP/cm²
Sensor width = 0.753 cm
Pixel density = (4043 / 0.753)² / 1000000 = 28.83 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
IXUS 65 sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.00
Resolution horizontal: X × r = 2124 × 1.33 = 2825
Resolution vertical: X = 2124
Sensor resolution = 2825 x 2124
Sensor height = 4.32 mm
Effective megapixels = 6.00
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 2124
Sensor resolution = 2825 x 2124
P330 sensor resolution
Sensor width = 7.53 mm
Sensor height = 5.64 mm
Effective megapixels = 12.20
Resolution horizontal: X × r = 3017 × 1.34 = 4043
Resolution vertical: X = 3017
Sensor resolution = 4043 x 3017
Sensor height = 5.64 mm
Effective megapixels = 12.20
r = 7.53/5.64 = 1.34 |
|
Resolution vertical: X = 3017
Sensor resolution = 4043 x 3017
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
IXUS 65 crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
P330 crop factor
Sensor diagonal in mm = 9.41 mm
Crop factor = | 43.27 | = 4.6 |
9.41 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
IXUS 65 equivalent aperture
Crop factor = 6.02
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 6.02 = f16.9 - f29.5
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 6.02 = f16.9 - f29.5
P330 equivalent aperture
Crop factor = 4.6
Aperture = f1.8 - f5.6
35-mm equivalent aperture = (f1.8 - f5.6) × 4.6 = f8.3 - f25.8
Aperture = f1.8 - f5.6
35-mm equivalent aperture = (f1.8 - f5.6) × 4.6 = f8.3 - f25.8
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.