Canon Digital IXUS 65 vs. Sony Mavica FD-100

Comparison

change cameras »
Digital IXUS 65 image
vs
Mavica FD-100 image
Canon Digital IXUS 65 Sony Mavica FD-100
check price » check price »
Megapixels
6.00
1.20
Max. image resolution
2816 x 2112
1280 x 960

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.7" (~ 5.33 x 4 mm)
Sensor resolution
2825 x 2124
1264 x 950
Diagonal
7.19 mm
6.66 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.17 : 1
(ratio)
Canon Digital IXUS 65 Sony Mavica FD-100
Surface area:
24.84 mm² vs 21.32 mm²
Difference: 3.52 mm² (17%)
IXUS 65 sensor is approx. 1.17x bigger than Mavica FD-100 sensor.
Note: You are comparing cameras of different generations. There is a 4 year gap between Canon IXUS 65 (2006) and Sony Mavica FD-100 (2002). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.04 µm
4.22 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 2.18 µm (107%)
Pixel pitch of Mavica FD-100 is approx. 107% higher than pixel pitch of IXUS 65.
Pixel area
4.16 µm²
17.81 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 13.65 µm² (328%)
A pixel on Sony Mavica FD-100 sensor is approx. 328% bigger than a pixel on Canon IXUS 65.
Pixel density
24.14 MP/cm²
5.62 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 18.52 µm (330%)
Canon IXUS 65 has approx. 330% higher pixel density than Sony Mavica FD-100.
To learn about the accuracy of these numbers, click here.



Specs

Canon IXUS 65
Sony Mavica FD-100
Crop factor
6.02
6.5
Total megapixels
6.20
1.30
Effective megapixels
6.00
1.20
Optical zoom
3x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80 ,100, 200, 400, 800
100
RAW
Manual focus
Normal focus range
30 cm
50 cm
Macro focus range
3 cm
10 cm
Focal length (35mm equiv.)
35 - 105 mm
37 - 111 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.9
f2.8 - f5.3
Max. aperture (35mm equiv.)
f16.9 - f29.5
f18.2 - f34.5
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
15 sec
2 sec
Max. shutter speed
1/1500 sec
1/500 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
4
Screen size
3"
2.5"
Screen resolution
173,000 dots
123,000 dots
Video capture
Max. video resolution
Storage types
SD/MMC card
Disk 3.5" (2x speed) or MemoryStick (slot)
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-4L battery
InfoLithium (NP-F330)
Weight
175 g
284 g
Dimensions
90 x 57 x 20 mm
125 x 58 x 44 mm
Year
2006
2002




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXUS 65 diagonal

The diagonal of IXUS 65 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Sony Mavica FD-100 diagonal

The diagonal of Mavica FD-100 sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of that value - 6.66 mm. If you want to know why, see sensor sizes.

w = 5.33 mm
h = 4.00 mm
Diagonal =  5.33² + 4.00²   = 6.66 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXUS 65 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

Mavica FD-100 sensor area

Width = 5.33 mm
Height = 4.00 mm

Surface area = 5.33 × 4.00 = 21.32 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXUS 65 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2825 pixels
Pixel pitch =   5.75  × 1000  = 2.04 µm
2825

Mavica FD-100 pixel pitch

Sensor width = 5.33 mm
Sensor resolution width = 1264 pixels
Pixel pitch =   5.33  × 1000  = 4.22 µm
1264


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXUS 65 pixel area

Pixel pitch = 2.04 µm

Pixel area = 2.04² = 4.16 µm²

Mavica FD-100 pixel area

Pixel pitch = 4.22 µm

Pixel area = 4.22² = 17.81 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXUS 65 pixel density

Sensor resolution width = 2825 pixels
Sensor width = 0.575 cm

Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²

Mavica FD-100 pixel density

Sensor resolution width = 1264 pixels
Sensor width = 0.533 cm

Pixel density = (1264 / 0.533)² / 1000000 = 5.62 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXUS 65 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.00
r = 5.75/4.32 = 1.33
X =  6.00 × 1000000  = 2124
1.33
Resolution horizontal: X × r = 2124 × 1.33 = 2825
Resolution vertical: X = 2124

Sensor resolution = 2825 x 2124

Mavica FD-100 sensor resolution

Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 1.20
r = 5.33/4.00 = 1.33
X =  1.20 × 1000000  = 950
1.33
Resolution horizontal: X × r = 950 × 1.33 = 1264
Resolution vertical: X = 950

Sensor resolution = 1264 x 950


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXUS 65 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

Mavica FD-100 crop factor

Sensor diagonal in mm = 6.66 mm
Crop factor =   43.27  = 6.5
6.66

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXUS 65 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 6.02 = f16.9 - f29.5

Mavica FD-100 equivalent aperture

Crop factor = 6.5
Aperture = f2.8 - f5.3

35-mm equivalent aperture = (f2.8 - f5.3) × 6.5 = f18.2 - f34.5

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.