Canon DIGITAL IXUS i5 vs. Sony a7S III
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon DIGITAL IXUS i5 | Sony a7S III | ||||
check price » | check price » |
Megapixels
5.00
12.10
Max. image resolution
2592 x 1944
4240 x 2832
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
35.6 x 23.8 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 34.11 |
(ratio) | ||
Canon DIGITAL IXUS i5 | Sony a7S III |
Surface area:
24.84 mm² | vs | 847.28 mm² |
Difference: 822.44 mm² (3311%)
a7S III sensor is approx. 34.11x bigger than DIGITAL IXUS i5 sensor.
Note: You are comparing sensors of vastly different generations.
There is a gap of 16 years between Canon DIGITAL IXUS i5 (2004) and
Sony a7S III (2020).
Sixteen years is a huge amount of time,
technology wise, resulting in newer sensor being much more
efficient than the older one.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 64.92 µm² (1306%)
A pixel on Sony a7S III sensor is approx. 1306% bigger than a pixel on Canon DIGITAL IXUS i5.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon DIGITAL IXUS i5
Sony a7S III
Total megapixels
5.20
12.90
Effective megapixels
5.00
12.10
Optical zoom
1x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 80-102400 (extends to 40-409600)
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
39 mm
Aperture priority
No
Yes
Max. aperture
f2.6 - f5.5
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/1500 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
5
10
Screen size
1.5"
3"
Screen resolution
78,000 dots
1,440,000 dots
Video capture
Max. video resolution
4264x2408 (60p)
Storage types
SD/MMC card
SD/SDHC/SDXC/MS Pro Duo/CFexpress
USB
USB 1.0
USB 3.0 (5 GBit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-3L battery
NP-FZ100 lithium-ion battery
Weight
140 g
614 g
Dimensions
90 x 47 x 19 mm
128.9 x 96.9 x 69.7 mm
Year
2004
2020
Choose cameras to compare
Popular comparisons:
- Canon DIGITAL IXUS i5 vs. Canon IXUS 220 HS
- Canon DIGITAL IXUS i5 vs. Canon PowerShot A610
- Canon DIGITAL IXUS i5 vs. Canon PowerShot S120
- Canon DIGITAL IXUS i5 vs. Canon PowerShot ELPH 330 HS
- Canon DIGITAL IXUS i5 vs. Nikon Coolpix L810
- Canon DIGITAL IXUS i5 vs. Canon IXUS 285 HS
- Canon DIGITAL IXUS i5 vs. Canon IXY DIGITAL 70
- Canon DIGITAL IXUS i5 vs. Canon DIGITAL IXUS 70
- Canon DIGITAL IXUS i5 vs. Canon Digital IXUS i
- Canon DIGITAL IXUS i5 vs. Canon IXUS 115 HS
- Canon DIGITAL IXUS i5 vs. Canon DIGITAL IXUS 30
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon DIGITAL IXUS i5 diagonal
The diagonal of DIGITAL IXUS i5 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of
that value - 7.19 mm. If you want to know why, see
sensor sizes.
w = 5.75 mm
h = 4.32 mm
w = 5.75 mm
h = 4.32 mm
Diagonal = √ | 5.75² + 4.32² | = 7.19 mm |
Sony a7S III diagonal
w = 35.60 mm
h = 23.80 mm
h = 23.80 mm
Diagonal = √ | 35.60² + 23.80² | = 42.82 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
DIGITAL IXUS i5 sensor area
Width = 5.75 mm
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
Height = 4.32 mm
Surface area = 5.75 × 4.32 = 24.84 mm²
a7S III sensor area
Width = 35.60 mm
Height = 23.80 mm
Surface area = 35.60 × 23.80 = 847.28 mm²
Height = 23.80 mm
Surface area = 35.60 × 23.80 = 847.28 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
DIGITAL IXUS i5 pixel pitch
Sensor width = 5.75 mm
Sensor resolution width = 2579 pixels
Sensor resolution width = 2579 pixels
Pixel pitch = | 5.75 | × 1000 | = 2.23 µm |
2579 |
a7S III pixel pitch
Sensor width = 35.60 mm
Sensor resolution width = 4260 pixels
Sensor resolution width = 4260 pixels
Pixel pitch = | 35.60 | × 1000 | = 8.36 µm |
4260 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
DIGITAL IXUS i5 pixel area
Pixel pitch = 2.23 µm
Pixel area = 2.23² = 4.97 µm²
Pixel area = 2.23² = 4.97 µm²
a7S III pixel area
Pixel pitch = 8.36 µm
Pixel area = 8.36² = 69.89 µm²
Pixel area = 8.36² = 69.89 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
DIGITAL IXUS i5 pixel density
Sensor resolution width = 2579 pixels
Sensor width = 0.575 cm
Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²
Sensor width = 0.575 cm
Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²
a7S III pixel density
Sensor resolution width = 4260 pixels
Sensor width = 3.56 cm
Pixel density = (4260 / 3.56)² / 1000000 = 1.43 MP/cm²
Sensor width = 3.56 cm
Pixel density = (4260 / 3.56)² / 1000000 = 1.43 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
DIGITAL IXUS i5 sensor resolution
Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 5.00
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939
Sensor resolution = 2579 x 1939
Sensor height = 4.32 mm
Effective megapixels = 5.00
r = 5.75/4.32 = 1.33 |
|
Resolution vertical: X = 1939
Sensor resolution = 2579 x 1939
a7S III sensor resolution
Sensor width = 35.60 mm
Sensor height = 23.80 mm
Effective megapixels = 12.10
Resolution horizontal: X × r = 2840 × 1.5 = 4260
Resolution vertical: X = 2840
Sensor resolution = 4260 x 2840
Sensor height = 23.80 mm
Effective megapixels = 12.10
r = 35.60/23.80 = 1.5 |
|
Resolution vertical: X = 2840
Sensor resolution = 4260 x 2840
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
DIGITAL IXUS i5 crop factor
Sensor diagonal in mm = 7.19 mm
Crop factor = | 43.27 | = 6.02 |
7.19 |
a7S III crop factor
Sensor diagonal in mm = 42.82 mm
Crop factor = | 43.27 | = 1.01 |
42.82 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
DIGITAL IXUS i5 equivalent aperture
Crop factor = 6.02
Aperture = f2.6 - f5.5
35-mm equivalent aperture = (f2.6 - f5.5) × 6.02 = f15.7 - f33.1
Aperture = f2.6 - f5.5
35-mm equivalent aperture = (f2.6 - f5.5) × 6.02 = f15.7 - f33.1
a7S III equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Sony a7S III, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Sony a7S III is 1.01
Crop factor for Sony a7S III is 1.01
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.