Canon PowerShot ELPH 120 IS vs. Nikon D3500
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon PowerShot ELPH 120 IS | Nikon D3500 | ||||
check price » | check price » |
Megapixels
16.00
24.20
Max. image resolution
4608 x 3456
6000 x 4000
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
23.5 x 15.6 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 12.88 |
(ratio) | ||
Canon PowerShot ELPH 120 IS | Nikon D3500 |
Surface area:
28.46 mm² | vs | 366.60 mm² |
Difference: 338.14 mm² (1188%)
D3500 sensor is approx. 12.88x bigger than ELPH 120 IS sensor.
Note: You are comparing cameras of different generations.
There is a 5 year gap between Canon ELPH 120 IS (2013) and Nikon D3500 (2018).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 13.33 µm² (741%)
A pixel on Nikon D3500 sensor is approx. 741% bigger than a pixel on Canon ELPH 120 IS.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon ELPH 120 IS
Nikon D3500
Total megapixels
16.60
24.78
Effective megapixels
16.00
24.20
Optical zoom
8x
Digital zoom
Yes
No
ISO sensitivity
Auto 100, 200, 400, 800, 1600
Auto, 100-25600
RAW
Manual focus
Normal focus range
Macro focus range
1 cm
Focal length (35mm equiv.)
28 - 224 mm
Aperture priority
No
Yes
Max. aperture
f3.2 - f6.9
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Optical (pentamirror)
White balance presets
5
12
Screen size
2.7"
3"
Screen resolution
461,000 dots
921,600 dots
Video capture
Max. video resolution
1920x1080 (60p/50p/30p/25p/24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NB-11LH lithium-ion battery
EN-EL14a lithium-ion battery
Weight
133 g
365 g
Dimensions
95.4 x 56 x 20.6 mm
124 x 97 x 69.5 mm
Year
2013
2018
Choose cameras to compare
Popular comparisons:
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot ELPH 360 HS
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot ELPH 110 HS
- Canon PowerShot ELPH 120 IS vs. Canon IXUS 130
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot A580
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot A3500 IS
- Canon PowerShot ELPH 120 IS vs. Canon IXUS 170
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot ELPH 130 IS
- Canon PowerShot ELPH 120 IS vs. Nikon Coolpix B500
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot SX620 HS
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot ELPH 320 HS
- Canon PowerShot ELPH 120 IS vs. Canon PowerShot ELPH 300 HS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon ELPH 120 IS diagonal
The diagonal of ELPH 120 IS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Nikon D3500 diagonal
w = 23.50 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √ | 23.50² + 15.60² | = 28.21 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
ELPH 120 IS sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
D3500 sensor area
Width = 23.50 mm
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
ELPH 120 IS pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.34 µm |
4612 |
D3500 pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 6045 pixels
Sensor resolution width = 6045 pixels
Pixel pitch = | 23.50 | × 1000 | = 3.89 µm |
6045 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
ELPH 120 IS pixel area
Pixel pitch = 1.34 µm
Pixel area = 1.34² = 1.8 µm²
Pixel area = 1.34² = 1.8 µm²
D3500 pixel area
Pixel pitch = 3.89 µm
Pixel area = 3.89² = 15.13 µm²
Pixel area = 3.89² = 15.13 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
ELPH 120 IS pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
D3500 pixel density
Sensor resolution width = 6045 pixels
Sensor width = 2.35 cm
Pixel density = (6045 / 2.35)² / 1000000 = 6.62 MP/cm²
Sensor width = 2.35 cm
Pixel density = (6045 / 2.35)² / 1000000 = 6.62 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
ELPH 120 IS sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
D3500 sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 24.20
Resolution horizontal: X × r = 4003 × 1.51 = 6045
Resolution vertical: X = 4003
Sensor resolution = 6045 x 4003
Sensor height = 15.60 mm
Effective megapixels = 24.20
r = 23.50/15.60 = 1.51 |
|
Resolution vertical: X = 4003
Sensor resolution = 6045 x 4003
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
ELPH 120 IS crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
D3500 crop factor
Sensor diagonal in mm = 28.21 mm
Crop factor = | 43.27 | = 1.53 |
28.21 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
ELPH 120 IS equivalent aperture
Crop factor = 5.62
Aperture = f3.2 - f6.9
35-mm equivalent aperture = (f3.2 - f6.9) × 5.62 = f18 - f38.8
Aperture = f3.2 - f6.9
35-mm equivalent aperture = (f3.2 - f6.9) × 5.62 = f18 - f38.8
D3500 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Nikon D3500, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Nikon D3500 is 1.53
Crop factor for Nikon D3500 is 1.53
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.