Canon EOS 1200D vs. Sony Cyber-shot DSC-H300

Comparison

change cameras »
EOS 1200D image
vs
Cyber-shot DSC-H300 image
Canon EOS 1200D Sony Cyber-shot DSC-H300
check price » check price »
Megapixels
18.00
20.10
Max. image resolution
5184 x 3456
5152 x 3864

Sensor

Sensor type
CMOS
CCD
Sensor size
22.3 x 14.9 mm
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
5196 x 3464
5171 x 3888
Diagonal
26.82 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
11.67 : 1
(ratio)
Canon EOS 1200D Sony Cyber-shot DSC-H300
Surface area:
332.27 mm² vs 28.46 mm²
Difference: 303.81 mm² (1067%)
1200D sensor is approx. 11.67x bigger than H300 sensor.
Pixel pitch
4.29 µm
1.19 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 3.1 µm (261%)
Pixel pitch of 1200D is approx. 261% higher than pixel pitch of H300.
Pixel area
18.4 µm²
1.42 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 16.98 µm² (1196%)
A pixel on Canon 1200D sensor is approx. 1196% bigger than a pixel on Sony H300.
Pixel density
5.43 MP/cm²
70.47 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 65.04 µm (1198%)
Sony H300 has approx. 1198% higher pixel density than Canon 1200D.
To learn about the accuracy of these numbers, click here.



Specs

Canon 1200D
Sony H300
Crop factor
1.61
5.62
Total megapixels
18.70
20.40
Effective megapixels
18.00
20.10
Optical zoom
35x
Digital zoom
No
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200, 6400
Auto, 80-3200
RAW
Manual focus
Normal focus range
Macro focus range
1 cm
Focal length (35mm equiv.)
25 - 875 mm
Aperture priority
Yes
No
Max. aperture
f3.0 - f5.9
Max. aperture (35mm equiv.)
n/a
f16.9 - f33.2
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
No
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/1500 sec
Built-in flash
External flash
Viewfinder
Optical (pentamirror)
None
White balance presets
6
7
Screen size
3"
3"
Screen resolution
460,000 dots
460,800 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
1280x720 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC, Memory Stick Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-ion Battery LP-E10
4 x AA batteries
Weight
480 g
495 g
Dimensions
129.6 x 99.7 x 77.9 mm
129.6 x 95 x 122.3 mm
Year
2014
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon 1200D diagonal

w = 22.30 mm
h = 14.90 mm
Diagonal =  22.30² + 14.90²   = 26.82 mm

Sony H300 diagonal

The diagonal of H300 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

1200D sensor area

Width = 22.30 mm
Height = 14.90 mm

Surface area = 22.30 × 14.90 = 332.27 mm²

H300 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

1200D pixel pitch

Sensor width = 22.30 mm
Sensor resolution width = 5196 pixels
Pixel pitch =   22.30  × 1000  = 4.29 µm
5196

H300 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 5171 pixels
Pixel pitch =   6.16  × 1000  = 1.19 µm
5171


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

1200D pixel area

Pixel pitch = 4.29 µm

Pixel area = 4.29² = 18.4 µm²

H300 pixel area

Pixel pitch = 1.19 µm

Pixel area = 1.19² = 1.42 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

1200D pixel density

Sensor resolution width = 5196 pixels
Sensor width = 2.23 cm

Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²

H300 pixel density

Sensor resolution width = 5171 pixels
Sensor width = 0.616 cm

Pixel density = (5171 / 0.616)² / 1000000 = 70.47 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

1200D sensor resolution

Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 18.00
r = 22.30/14.90 = 1.5
X =  18.00 × 1000000  = 3464
1.5
Resolution horizontal: X × r = 3464 × 1.5 = 5196
Resolution vertical: X = 3464

Sensor resolution = 5196 x 3464

H300 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 20.10
r = 6.16/4.62 = 1.33
X =  20.10 × 1000000  = 3888
1.33
Resolution horizontal: X × r = 3888 × 1.33 = 5171
Resolution vertical: X = 3888

Sensor resolution = 5171 x 3888


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


1200D crop factor

Sensor diagonal in mm = 26.82 mm
Crop factor =   43.27  = 1.61
26.82

H300 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

1200D equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Canon 1200D, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Canon 1200D is 1.61

H300 equivalent aperture

Crop factor = 5.62
Aperture = f3.0 - f5.9

35-mm equivalent aperture = (f3.0 - f5.9) × 5.62 = f16.9 - f33.2

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.