Canon EOS M10 vs. Sony Cyber-shot DSC-HX90V
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon EOS M10 | Sony Cyber-shot DSC-HX90V | ||||
check price » | check price » |
Megapixels
18.00
18.20
Max. image resolution
5184 x 3456
4896 x 3672
Sensor
Sensor type
CMOS
CMOS
Sensor size
22.3 x 14.9 mm
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
11.67 | : | 1 |
(ratio) | ||
Canon EOS M10 | Sony Cyber-shot DSC-HX90V |
Surface area:
332.27 mm² | vs | 28.46 mm² |
Difference: 303.81 mm² (1067%)
M10 sensor is approx. 11.67x bigger than HX90V sensor.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 16.84 µm² (1079%)
A pixel on Canon M10 sensor is approx. 1079% bigger than a pixel on Sony HX90V.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon M10
Sony HX90V
Total megapixels
18.50
Effective megapixels
18.00
18.20
Optical zoom
30x
Digital zoom
Yes
ISO sensitivity
Auto, 100-12800 (expandable to 25600)
Auto, 80 - 12800
RAW
Manual focus
Normal focus range
5 cm
Macro focus range
Focal length (35mm equiv.)
24 - 720 mm
Aperture priority
Yes
Yes
Max. aperture
f3.5 - f6.4
Metering
Multi, Center-weighted, Spot, Partial
Multi, Center-weighted, Spot
Exposure compensation
±3 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
6
8
Screen size
3"
3"
Screen resolution
1,040,000 dots
921,000 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
1920x1080 (60p/60i/30p/24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC/Memory Stick Duo
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
LP-E12 lithium-ion battery
Rechargeable Battery Pack NP-BX1
Weight
301 g
245 g
Dimensions
108 x 66.6 x 35 mm
102 x 58.1 x 35.4 mm
Year
2015
2015
Choose cameras to compare
Popular comparisons:
- Canon EOS M10 vs. Canon EOS 1300D
- Canon EOS M10 vs. Sony Alpha a5000
- Canon EOS M10 vs. Sony Cyber-shot DSC-HX60
- Canon EOS M10 vs. Nikon 1 J5
- Canon EOS M10 vs. Sony Alpha a6000
- Canon EOS M10 vs. Canon EOS M3
- Canon EOS M10 vs. Canon EOS M100
- Canon EOS M10 vs. Sony Cyber-shot DSC-RX100
- Canon EOS M10 vs. Sony Alpha a5100
- Canon EOS M10 vs. Panasonic Lumix DMC-GF7
- Canon EOS M10 vs. Fujifilm X-A2
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon M10 diagonal
w = 22.30 mm
h = 14.90 mm
h = 14.90 mm
Diagonal = √ | 22.30² + 14.90² | = 26.82 mm |
Sony HX90V diagonal
The diagonal of HX90V sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
M10 sensor area
Width = 22.30 mm
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
HX90V sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
M10 pixel pitch
Sensor width = 22.30 mm
Sensor resolution width = 5196 pixels
Sensor resolution width = 5196 pixels
Pixel pitch = | 22.30 | × 1000 | = 4.29 µm |
5196 |
HX90V pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4920 pixels
Sensor resolution width = 4920 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.25 µm |
4920 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
M10 pixel area
Pixel pitch = 4.29 µm
Pixel area = 4.29² = 18.4 µm²
Pixel area = 4.29² = 18.4 µm²
HX90V pixel area
Pixel pitch = 1.25 µm
Pixel area = 1.25² = 1.56 µm²
Pixel area = 1.25² = 1.56 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
M10 pixel density
Sensor resolution width = 5196 pixels
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
HX90V pixel density
Sensor resolution width = 4920 pixels
Sensor width = 0.616 cm
Pixel density = (4920 / 0.616)² / 1000000 = 63.79 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4920 / 0.616)² / 1000000 = 63.79 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
M10 sensor resolution
Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 18.00
Resolution horizontal: X × r = 3464 × 1.5 = 5196
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
Sensor height = 14.90 mm
Effective megapixels = 18.00
r = 22.30/14.90 = 1.5 |
|
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
HX90V sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 18.20
Resolution horizontal: X × r = 3699 × 1.33 = 4920
Resolution vertical: X = 3699
Sensor resolution = 4920 x 3699
Sensor height = 4.62 mm
Effective megapixels = 18.20
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3699
Sensor resolution = 4920 x 3699
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
M10 crop factor
Sensor diagonal in mm = 26.82 mm
Crop factor = | 43.27 | = 1.61 |
26.82 |
HX90V crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
M10 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon M10, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Canon M10 is 1.61
Crop factor for Canon M10 is 1.61
HX90V equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f6.4
35-mm equivalent aperture = (f3.5 - f6.4) × 5.62 = f19.7 - f36
Aperture = f3.5 - f6.4
35-mm equivalent aperture = (f3.5 - f6.4) × 5.62 = f19.7 - f36
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.