Canon EOS M100 vs. Panasonic Lumix DC-GX800
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon EOS M100 | Panasonic Lumix DC-GX800 | ||||
check price » | check price » |
Megapixels
24.20
16.00
Max. image resolution
6000 x 4000
4592 x 3448
Sensor
Sensor type
CMOS
CMOS
Sensor size
22.3 x 14.9 mm
Four Thirds (17.3 x 13 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.48 | : | 1 |
(ratio) | ||
Canon EOS M100 | Panasonic Lumix DC-GX800 |
Surface area:
332.27 mm² | vs | 224.90 mm² |
Difference: 107.37 mm² (48%)
M100 sensor is approx. 1.48x bigger than Lumix DC-GX800 sensor.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.37 µm² (3%)
A pixel on Panasonic Lumix DC-GX800 sensor is approx. 3% bigger than a pixel on Canon M100.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon M100
Panasonic Lumix DC-GX800
Total megapixels
25.80
16.84
Effective megapixels
24.20
16.00
Optical zoom
Digital zoom
Yes
ISO sensitivity
Auto, 100-25600
Auto, 200-25600 (extends to 100)
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
Aperture priority
Yes
Yes
Max. aperture
Metering
Multi, Center-weighted, Spot, Partial
Multi, Center-weighted, Spot
Exposure compensation
±3 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
60 sec
Max. shutter speed
1/4000 sec
1/16000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
5
Screen size
3"
3"
Screen resolution
1,040,000 dots
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (60p/50p/30p/25p/24p)
3840x2160 (30p/24p)
Storage types
SD/SDHC/SDXC
microSD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
LP-E12 lithium-ion battery
Rechargeable Lithium-ion battery pack
Weight
302 g
269 g
Dimensions
108.2 x 67.1 x 35.1 mm
106.5 x 64.6 x 33.3 mm
Year
2017
2017
Choose cameras to compare
Popular comparisons:
- Canon EOS M100 vs. Panasonic Lumix DC-GF9
- Canon EOS M100 vs. Canon EOS M3
- Canon EOS M100 vs. Canon EOS 1300D
- Canon EOS M100 vs. Canon EOS 200D
- Canon EOS M100 vs. Sony Alpha a6000
- Canon EOS M100 vs. Canon PowerShot G7 X Mark II
- Canon EOS M100 vs. Sony Alpha a5100
- Canon EOS M100 vs. Canon EOS M10
- Canon EOS M100 vs. Panasonic Lumix DC-GX800
- Canon EOS M100 vs. Panasonic Lumix DMC-GX80
- Canon EOS M100 vs. Canon EOS M6
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon M100 diagonal
w = 22.30 mm
h = 14.90 mm
h = 14.90 mm
Diagonal = √ | 22.30² + 14.90² | = 26.82 mm |
Panasonic Lumix DC-GX800 diagonal
w = 17.30 mm
h = 13.00 mm
h = 13.00 mm
Diagonal = √ | 17.30² + 13.00² | = 21.64 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
M100 sensor area
Width = 22.30 mm
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Lumix DC-GX800 sensor area
Width = 17.30 mm
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
Height = 13.00 mm
Surface area = 17.30 × 13.00 = 224.90 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
M100 pixel pitch
Sensor width = 22.30 mm
Sensor resolution width = 6026 pixels
Sensor resolution width = 6026 pixels
Pixel pitch = | 22.30 | × 1000 | = 3.7 µm |
6026 |
Lumix DC-GX800 pixel pitch
Sensor width = 17.30 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 17.30 | × 1000 | = 3.75 µm |
4612 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
M100 pixel area
Pixel pitch = 3.7 µm
Pixel area = 3.7² = 13.69 µm²
Pixel area = 3.7² = 13.69 µm²
Lumix DC-GX800 pixel area
Pixel pitch = 3.75 µm
Pixel area = 3.75² = 14.06 µm²
Pixel area = 3.75² = 14.06 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
M100 pixel density
Sensor resolution width = 6026 pixels
Sensor width = 2.23 cm
Pixel density = (6026 / 2.23)² / 1000000 = 7.3 MP/cm²
Sensor width = 2.23 cm
Pixel density = (6026 / 2.23)² / 1000000 = 7.3 MP/cm²
Lumix DC-GX800 pixel density
Sensor resolution width = 4612 pixels
Sensor width = 1.73 cm
Pixel density = (4612 / 1.73)² / 1000000 = 7.11 MP/cm²
Sensor width = 1.73 cm
Pixel density = (4612 / 1.73)² / 1000000 = 7.11 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
M100 sensor resolution
Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 24.20
Resolution horizontal: X × r = 4017 × 1.5 = 6026
Resolution vertical: X = 4017
Sensor resolution = 6026 x 4017
Sensor height = 14.90 mm
Effective megapixels = 24.20
r = 22.30/14.90 = 1.5 |
|
Resolution vertical: X = 4017
Sensor resolution = 6026 x 4017
Lumix DC-GX800 sensor resolution
Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 13.00 mm
Effective megapixels = 16.00
r = 17.30/13.00 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
M100 crop factor
Sensor diagonal in mm = 26.82 mm
Crop factor = | 43.27 | = 1.61 |
26.82 |
Lumix DC-GX800 crop factor
Sensor diagonal in mm = 21.64 mm
Crop factor = | 43.27 | = 2 |
21.64 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
M100 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon M100, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Canon M100 is 1.61
Crop factor for Canon M100 is 1.61
Lumix DC-GX800 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Panasonic Lumix DC-GX800, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Panasonic Lumix DC-GX800 is 2
Crop factor for Panasonic Lumix DC-GX800 is 2
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.