Canon IXY 420F vs. Fujifilm FinePix Z200fd

Comparison

change cameras »
IXY 420F image
vs
FinePix Z200fd image
Canon IXY 420F Fujifilm FinePix Z200fd
check price » check price »
Megapixels
16.10
10.00
Max. image resolution
4608 x 3456
3648 x 2736

Sensor

Sensor type
CMOS
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4627 x 3479
3647 x 2742
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Canon IXY 420F Fujifilm FinePix Z200fd
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
IXY 420F and Z200fd sensors are the same size.
Note: You are comparing cameras of different generations. There is a 4 year gap between Canon IXY 420F (2012) and Fujifilm Z200fd (2008). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.33 µm
1.69 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.36 µm (27%)
Pixel pitch of Z200fd is approx. 27% higher than pixel pitch of IXY 420F.
Pixel area
1.77 µm²
2.86 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.09 µm² (62%)
A pixel on Fujifilm Z200fd sensor is approx. 62% bigger than a pixel on Canon IXY 420F.
Pixel density
56.42 MP/cm²
35.05 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 21.37 µm (61%)
Canon IXY 420F has approx. 61% higher pixel density than Fujifilm Z200fd.
To learn about the accuracy of these numbers, click here.

Specs

Canon IXY 420F
Fujifilm Z200fd
Crop factor
5.62
5.62
Total megapixels
Effective megapixels
16.10
10.00
Optical zoom
5x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200
Auto
RAW
Manual focus
Normal focus range
60 cm
Macro focus range
3 cm
9 cm
Focal length (35mm equiv.)
24 - 120 mm
33 - 165 mm
Aperture priority
No
No
Max. aperture
f2.7 - f5.9
f3.8 - f4.8
Max. aperture (35mm equiv.)
f15.2 - f33.2
f21.4 - f27
Metering
Multi, Center-weighted, Spot
TTL 256-zones metering
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
15 sec
1 sec
Max. shutter speed
1/2000 sec
1/1000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
5
Screen size
3.2"
2.7"
Screen resolution
461,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SD/SDHC/SDXC
SDHC, Secure Digital, xD Picture card
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-11L rechargeable battery
Lithium-Ion (NP-45)
Weight
145 g
134 g
Dimensions
94 x 57 x 21 mm
92.0 x 55.7 x 20.0 mm
Year
2012
2008



Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXY 420F diagonal

The diagonal of IXY 420F sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Fujifilm Z200fd diagonal

The diagonal of Z200fd sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXY 420F sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

Z200fd sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXY 420F pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4627 pixels
Pixel pitch =   6.16  × 1000  = 1.33 µm
4627

Z200fd pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Pixel pitch =   6.16  × 1000  = 1.69 µm
3647


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXY 420F pixel area

Pixel pitch = 1.33 µm

Pixel area = 1.33² = 1.77 µm²

Z200fd pixel area

Pixel pitch = 1.69 µm

Pixel area = 1.69² = 2.86 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXY 420F pixel density

Sensor resolution width = 4627 pixels
Sensor width = 0.616 cm

Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²

Z200fd pixel density

Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm

Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXY 420F sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.10
r = 6.16/4.62 = 1.33
X =  16.10 × 1000000  = 3479
1.33
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479

Sensor resolution = 4627 x 3479

Z200fd sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33
X =  10.00 × 1000000  = 2742
1.33
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742

Sensor resolution = 3647 x 2742


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXY 420F crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

Z200fd crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXY 420F equivalent aperture

Crop factor = 5.62
Aperture = f2.7 - f5.9

35-mm equivalent aperture = (f2.7 - f5.9) × 5.62 = f15.2 - f33.2

Z200fd equivalent aperture

Crop factor = 5.62
Aperture = f3.8 - f4.8

35-mm equivalent aperture = (f3.8 - f4.8) × 5.62 = f21.4 - f27

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.