Canon IXY 50S vs. Canon EOS M6 Mark II

Comparison

change cameras »
IXY 50S image
vs
EOS M6 Mark II image
Canon IXY 50S Canon EOS M6 Mark II
check price » check price »
Megapixels
10.00
32.50
Max. image resolution
3648 x 2736
6960 x 4640

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
22.3 x 14.9 mm
Sensor resolution
3647 x 2742
6983 x 4655
Diagonal
7.70 mm
26.82 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 11.67
(ratio)
Canon IXY 50S Canon EOS M6 Mark II
Surface area:
28.46 mm² vs 332.27 mm²
Difference: 303.81 mm² (1067%)
M6 Mark II sensor is approx. 11.67x bigger than IXY 50S sensor.
Note: You are comparing sensors of very different generations. There is a gap of 9 years between Canon IXY 50S (2010) and Canon M6 Mark II (2019). Nine years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.69 µm
3.19 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.5 µm (89%)
Pixel pitch of M6 Mark II is approx. 89% higher than pixel pitch of IXY 50S.
Pixel area
2.86 µm²
10.18 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 7.32 µm² (256%)
A pixel on Canon M6 Mark II sensor is approx. 256% bigger than a pixel on Canon IXY 50S.
Pixel density
35.05 MP/cm²
9.81 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 25.24 µm (257%)
Canon IXY 50S has approx. 257% higher pixel density than Canon M6 Mark II.
To learn about the accuracy of these numbers, click here.



Specs

Canon IXY 50S
Canon M6 Mark II
Crop factor
5.62
1.61
Total megapixels
10.60
34.40
Effective megapixels
10.00
32.50
Optical zoom
10x
Digital zoom
Yes
ISO sensitivity
Auto, 125, 200, 400, 800, 1600, 3200
Auto, 100-25600 (expandable to 51200)
RAW
Manual focus
Normal focus range
30 cm
Macro focus range
1 cm
Focal length (35mm equiv.)
36 - 360 mm
Aperture priority
No
Yes
Max. aperture
f3.4 - f5.6
Max. aperture (35mm equiv.)
f19.1 - f31.5
n/a
Metering
Centre weighted, Evaluative, Spot
Multi, Center-weighted, Spot, Partial
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Electronic (optional)
White balance presets
6
6
Screen size
3"
3"
Screen resolution
230,000 dots
1,040,000 dots
Video capture
Max. video resolution
3840x2160 (30p/​25p)
Storage types
SDHC, SDXC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-9L battery
LP-E17 lithium-ion battery
Weight
190 g
408 g
Dimensions
101 x 59 x 22 mm
119.6 x 70 x 49.2 mm
Year
2010
2019




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXY 50S diagonal

The diagonal of IXY 50S sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Canon M6 Mark II diagonal

w = 22.30 mm
h = 14.90 mm
Diagonal =  22.30² + 14.90²   = 26.82 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXY 50S sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

M6 Mark II sensor area

Width = 22.30 mm
Height = 14.90 mm

Surface area = 22.30 × 14.90 = 332.27 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXY 50S pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Pixel pitch =   6.16  × 1000  = 1.69 µm
3647

M6 Mark II pixel pitch

Sensor width = 22.30 mm
Sensor resolution width = 6983 pixels
Pixel pitch =   22.30  × 1000  = 3.19 µm
6983


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXY 50S pixel area

Pixel pitch = 1.69 µm

Pixel area = 1.69² = 2.86 µm²

M6 Mark II pixel area

Pixel pitch = 3.19 µm

Pixel area = 3.19² = 10.18 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXY 50S pixel density

Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm

Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²

M6 Mark II pixel density

Sensor resolution width = 6983 pixels
Sensor width = 2.23 cm

Pixel density = (6983 / 2.23)² / 1000000 = 9.81 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXY 50S sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33
X =  10.00 × 1000000  = 2742
1.33
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742

Sensor resolution = 3647 x 2742

M6 Mark II sensor resolution

Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 32.50
r = 22.30/14.90 = 1.5
X =  32.50 × 1000000  = 4655
1.5
Resolution horizontal: X × r = 4655 × 1.5 = 6983
Resolution vertical: X = 4655

Sensor resolution = 6983 x 4655


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXY 50S crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

M6 Mark II crop factor

Sensor diagonal in mm = 26.82 mm
Crop factor =   43.27  = 1.61
26.82

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXY 50S equivalent aperture

Crop factor = 5.62
Aperture = f3.4 - f5.6

35-mm equivalent aperture = (f3.4 - f5.6) × 5.62 = f19.1 - f31.5

M6 Mark II equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Canon M6 Mark II, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Canon M6 Mark II is 1.61

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.