Canon IXY DIGITAL 50 vs. Kodak EasyShare M853

Comparison

change cameras »
IXY DIGITAL 50 image
vs
EasyShare M853 image
Canon IXY DIGITAL 50 Kodak EasyShare M853
check price » check price »
Megapixels
3.90
8.10
Max. image resolution
2272 x 1704
3296 x 2472

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor resolution
2277 x 1712
3282 x 2468
Diagonal
7.19 mm
7.19 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Canon IXY DIGITAL 50 Kodak EasyShare M853
Surface area:
24.84 mm² vs 24.84 mm²
Difference: 0 mm² (0%)
IXY DIGITAL 50 and M853 sensors are the same size.
Note: You are comparing cameras of different generations. There is a 3 year gap between Canon IXY DIGITAL 50 (2004) and Kodak M853 (2007). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.53 µm
1.75 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.78 µm (45%)
Pixel pitch of IXY DIGITAL 50 is approx. 45% higher than pixel pitch of M853.
Pixel area
6.4 µm²
3.06 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.34 µm² (109%)
A pixel on Canon IXY DIGITAL 50 sensor is approx. 109% bigger than a pixel on Kodak M853.
Pixel density
15.68 MP/cm²
32.58 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 16.9 µm (108%)
Kodak M853 has approx. 108% higher pixel density than Canon IXY DIGITAL 50.
To learn about the accuracy of these numbers, click here.



Specs

Canon IXY DIGITAL 50
Kodak M853
Crop factor
6.02
6.02
Total megapixels
4.10
8.30
Effective megapixels
3.90
8.10
Optical zoom
3x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 80, 100, 200, 400, 800, 1250
RAW
Manual focus
Normal focus range
50 cm
40 cm
Macro focus range
3 cm
15 cm
Focal length (35mm equiv.)
35 - 105 mm
37 - 111 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.9
f2.8 - f5.2
Max. aperture (35mm equiv.)
f16.9 - f29.5
f16.9 - f31.3
Metering
Multi, Center-weighted, Spot
Centre weighted
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/2 EV steps)
Shutter priority
No
No
Min. shutter speed
15 sec
4 sec
Max. shutter speed
1/1500 sec
1/1400 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
None
White balance presets
5
5
Screen size
2"
2.5"
Screen resolution
118,000 dots
154,000 dots
Video capture
Max. video resolution
Storage types
SD card
MultiMedia, Secure Digital
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-4L battery
Kodak Lithium-Ion, dock (optional)
Weight
147 g
130 g
Dimensions
86 x 54 x 21 mm
93 x 58 x 23 mm
Year
2004
2007




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXY DIGITAL 50 diagonal

The diagonal of IXY DIGITAL 50 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Kodak M853 diagonal

The diagonal of M853 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXY DIGITAL 50 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

M853 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXY DIGITAL 50 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2277 pixels
Pixel pitch =   5.75  × 1000  = 2.53 µm
2277

M853 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3282 pixels
Pixel pitch =   5.75  × 1000  = 1.75 µm
3282


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXY DIGITAL 50 pixel area

Pixel pitch = 2.53 µm

Pixel area = 2.53² = 6.4 µm²

M853 pixel area

Pixel pitch = 1.75 µm

Pixel area = 1.75² = 3.06 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXY DIGITAL 50 pixel density

Sensor resolution width = 2277 pixels
Sensor width = 0.575 cm

Pixel density = (2277 / 0.575)² / 1000000 = 15.68 MP/cm²

M853 pixel density

Sensor resolution width = 3282 pixels
Sensor width = 0.575 cm

Pixel density = (3282 / 0.575)² / 1000000 = 32.58 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXY DIGITAL 50 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 3.90
r = 5.75/4.32 = 1.33
X =  3.90 × 1000000  = 1712
1.33
Resolution horizontal: X × r = 1712 × 1.33 = 2277
Resolution vertical: X = 1712

Sensor resolution = 2277 x 1712

M853 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 8.10
r = 5.75/4.32 = 1.33
X =  8.10 × 1000000  = 2468
1.33
Resolution horizontal: X × r = 2468 × 1.33 = 3282
Resolution vertical: X = 2468

Sensor resolution = 3282 x 2468


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXY DIGITAL 50 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

M853 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXY DIGITAL 50 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 6.02 = f16.9 - f29.5

M853 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f5.2

35-mm equivalent aperture = (f2.8 - f5.2) × 6.02 = f16.9 - f31.3

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.