Canon IXY DIGITAL vs. Nikon D1

Comparison

change cameras »
IXY DIGITAL image
vs
D1 image
Canon IXY DIGITAL Nikon D1
check price » check price »
Megapixels
2.02
2.60
Max. image resolution
1600 x 1200
2000 x 1312

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.7" (~ 5.33 x 4 mm)
23.7 x 15.5 mm
Sensor resolution
1639 x 1232
1995 x 1304
Diagonal
6.66 mm
28.32 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 17.23
(ratio)
Canon IXY DIGITAL Nikon D1
Surface area:
21.32 mm² vs 367.35 mm²
Difference: 346.03 mm² (1623%)
D1 sensor is approx. 17.23x bigger than IXY DIGITAL sensor.
Pixel pitch
3.25 µm
11.88 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 8.63 µm (266%)
Pixel pitch of D1 is approx. 266% higher than pixel pitch of IXY DIGITAL.
Pixel area
10.56 µm²
141.13 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 130.57 µm² (1236%)
A pixel on Nikon D1 sensor is approx. 1236% bigger than a pixel on Canon IXY DIGITAL.
Pixel density
9.46 MP/cm²
0.71 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 8.75 µm (1232%)
Canon IXY DIGITAL has approx. 1232% higher pixel density than Nikon D1.
To learn about the accuracy of these numbers, click here.



Specs

Canon IXY DIGITAL
Nikon D1
Crop factor
6.5
1.53
Total megapixels
2.11
2.74
Effective megapixels
2.02
2.60
Optical zoom
2x
Digital zoom
Yes
No
ISO sensitivity
100
200, 400, 800, 1600
RAW
Manual focus
Normal focus range
57 cm
Macro focus range
10 cm
Focal length (35mm equiv.)
35 - 70 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.0
Max. aperture (35mm equiv.)
f18.2 - f26
n/a
Metering
Multi, Center-weighted, Spot
3D Matrix, Centre weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1 sec
30 sec
Max. shutter speed
1/1500 sec
1/16000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (pentaprism)
White balance presets
5
6
Screen size
1.5"
2"
Screen resolution
120,000 dots
114,000 dots
Video capture
Max. video resolution
Storage types
Compact Flash (Type I)
CompactFlash type I, CompactFlash type II, Microdrive
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
Canon Lithium-Ion
AA (4) batteries (NiMH recommended)
Weight
250 g
1200 g
Dimensions
87 x 57 x 27 mm
157 x 153 x 85 mm
Year
2000
1999




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon IXY DIGITAL diagonal

The diagonal of IXY DIGITAL sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of that value - 6.66 mm. If you want to know why, see sensor sizes.

w = 5.33 mm
h = 4.00 mm
Diagonal =  5.33² + 4.00²   = 6.66 mm

Nikon D1 diagonal

w = 23.70 mm
h = 15.50 mm
Diagonal =  23.70² + 15.50²   = 28.32 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

IXY DIGITAL sensor area

Width = 5.33 mm
Height = 4.00 mm

Surface area = 5.33 × 4.00 = 21.32 mm²

D1 sensor area

Width = 23.70 mm
Height = 15.50 mm

Surface area = 23.70 × 15.50 = 367.35 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

IXY DIGITAL pixel pitch

Sensor width = 5.33 mm
Sensor resolution width = 1639 pixels
Pixel pitch =   5.33  × 1000  = 3.25 µm
1639

D1 pixel pitch

Sensor width = 23.70 mm
Sensor resolution width = 1995 pixels
Pixel pitch =   23.70  × 1000  = 11.88 µm
1995


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

IXY DIGITAL pixel area

Pixel pitch = 3.25 µm

Pixel area = 3.25² = 10.56 µm²

D1 pixel area

Pixel pitch = 11.88 µm

Pixel area = 11.88² = 141.13 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

IXY DIGITAL pixel density

Sensor resolution width = 1639 pixels
Sensor width = 0.533 cm

Pixel density = (1639 / 0.533)² / 1000000 = 9.46 MP/cm²

D1 pixel density

Sensor resolution width = 1995 pixels
Sensor width = 2.37 cm

Pixel density = (1995 / 2.37)² / 1000000 = 0.71 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

IXY DIGITAL sensor resolution

Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 2.02
r = 5.33/4.00 = 1.33
X =  2.02 × 1000000  = 1232
1.33
Resolution horizontal: X × r = 1232 × 1.33 = 1639
Resolution vertical: X = 1232

Sensor resolution = 1639 x 1232

D1 sensor resolution

Sensor width = 23.70 mm
Sensor height = 15.50 mm
Effective megapixels = 2.60
r = 23.70/15.50 = 1.53
X =  2.60 × 1000000  = 1304
1.53
Resolution horizontal: X × r = 1304 × 1.53 = 1995
Resolution vertical: X = 1304

Sensor resolution = 1995 x 1304


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


IXY DIGITAL crop factor

Sensor diagonal in mm = 6.66 mm
Crop factor =   43.27  = 6.5
6.66

D1 crop factor

Sensor diagonal in mm = 28.32 mm
Crop factor =   43.27  = 1.53
28.32

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

IXY DIGITAL equivalent aperture

Crop factor = 6.5
Aperture = f2.8 - f4.0

35-mm equivalent aperture = (f2.8 - f4.0) × 6.5 = f18.2 - f26

D1 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Nikon D1, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Nikon D1 is 1.53

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.