Canon PowerShot A3000 IS vs. Canon EOS 1300D
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon PowerShot A3000 IS | Canon EOS 1300D | ||||
check price » | check price » |
Megapixels
10.00
18.00
Max. image resolution
3648 x 2736
5184 x 3456
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
22.3 x 14.9 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 11.67 |
(ratio) | ||
Canon PowerShot A3000 IS | Canon EOS 1300D |
Surface area:
28.46 mm² | vs | 332.27 mm² |
Difference: 303.81 mm² (1067%)
1300D sensor is approx. 11.67x bigger than A3000 IS sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 6 years between Canon A3000 IS (2010) and Canon 1300D (2016).
Six years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 15.54 µm² (543%)
A pixel on Canon 1300D sensor is approx. 543% bigger than a pixel on Canon A3000 IS.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon A3000 IS
Canon 1300D
Total megapixels
10.60
18.70
Effective megapixels
10.00
18.00
Optical zoom
4x
Digital zoom
Yes
No
ISO sensitivity
Auto, 100, 200, 400, 800, 1600
Auto, 100-6400 (expandable to 12800)
RAW
Manual focus
Normal focus range
35 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
35 - 140 mm
Aperture priority
No
Yes
Max. aperture
f2.7 - f5.6
Metering
Centre weighted, Evaluative, Spot
Multi, Center-weighted, Partial
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/1600 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Optical (pentamirror)
White balance presets
6
6
Screen size
2.7"
3"
Screen resolution
230,000 dots
921,600 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
Storage types
SDHC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-8L rechargeable battery
Lithium-Ion LP-E10 rechargeable battery
Weight
125 g
485 g
Dimensions
97 x 58 x 28 mm
129 x 101.3 x 77.6 mm
Year
2010
2016
Choose cameras to compare
Popular comparisons:
- Canon PowerShot A3000 IS vs. Canon PowerShot A3100 IS
- Canon PowerShot A3000 IS vs. Casio Exilim EX-JE10
- Canon PowerShot A3000 IS vs. Canon PowerShot A2500
- Canon PowerShot A3000 IS vs. Nikon Coolpix S3100
- Canon PowerShot A3000 IS vs. Canon Digital IXUS 100 IS
- Canon PowerShot A3000 IS vs. Canon PowerShot A1000 IS
- Canon PowerShot A3000 IS vs. Panasonic Lumix DMC-FS16
- Canon PowerShot A3000 IS vs. Canon PowerShot SX50 HS
- Canon PowerShot A3000 IS vs. Canon EOS 1300D
- Canon PowerShot A3000 IS vs. Canon PowerShot A3400 IS
- Canon PowerShot A3000 IS vs. Sony Cyber-shot DSC-W800
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon A3000 IS diagonal
The diagonal of A3000 IS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Canon 1300D diagonal
w = 22.30 mm
h = 14.90 mm
h = 14.90 mm
Diagonal = √ | 22.30² + 14.90² | = 26.82 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
A3000 IS sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
1300D sensor area
Width = 22.30 mm
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
A3000 IS pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Sensor resolution width = 3647 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.69 µm |
3647 |
1300D pixel pitch
Sensor width = 22.30 mm
Sensor resolution width = 5196 pixels
Sensor resolution width = 5196 pixels
Pixel pitch = | 22.30 | × 1000 | = 4.29 µm |
5196 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
A3000 IS pixel area
Pixel pitch = 1.69 µm
Pixel area = 1.69² = 2.86 µm²
Pixel area = 1.69² = 2.86 µm²
1300D pixel area
Pixel pitch = 4.29 µm
Pixel area = 4.29² = 18.4 µm²
Pixel area = 4.29² = 18.4 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
A3000 IS pixel density
Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
1300D pixel density
Sensor resolution width = 5196 pixels
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
A3000 IS sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
1300D sensor resolution
Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 18.00
Resolution horizontal: X × r = 3464 × 1.5 = 5196
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
Sensor height = 14.90 mm
Effective megapixels = 18.00
r = 22.30/14.90 = 1.5 |
|
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
A3000 IS crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
1300D crop factor
Sensor diagonal in mm = 26.82 mm
Crop factor = | 43.27 | = 1.61 |
26.82 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
A3000 IS equivalent aperture
Crop factor = 5.62
Aperture = f2.7 - f5.6
35-mm equivalent aperture = (f2.7 - f5.6) × 5.62 = f15.2 - f31.5
Aperture = f2.7 - f5.6
35-mm equivalent aperture = (f2.7 - f5.6) × 5.62 = f15.2 - f31.5
1300D equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon 1300D, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Canon 1300D is 1.61
Crop factor for Canon 1300D is 1.61
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.