Canon PowerShot A400 vs. Canon PowerShot A495
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon PowerShot A400 | Canon PowerShot A495 | ||||
check price » | check price » |
Megapixels
3.10
10.00
Max. image resolution
2048 x 1536
3648 x 2736
Sensor
Sensor type
CCD
CCD
Sensor size
1/3.2" (~ 4.5 x 3.37 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.88 |
(ratio) | ||
Canon PowerShot A400 | Canon PowerShot A495 |
Surface area:
15.17 mm² | vs | 28.46 mm² |
Difference: 13.29 mm² (88%)
A495 sensor is approx. 1.88x bigger than A400 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 6 years between Canon A400 (2004) and Canon A495 (2010).
Six years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.02 µm² (71%)
A pixel on Canon A400 sensor is approx. 71% bigger than a pixel on Canon A495.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon A400
Canon A495
Total megapixels
3.30
Effective megapixels
3.10
10.00
Optical zoom
2.2x
3.3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 100, 200, 400, 800, 1600
RAW
Manual focus
Normal focus range
50 cm
35 cm
Macro focus range
5 cm
1 cm
Focal length (35mm equiv.)
45 - 100 mm
37 - 122 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.9
f3.0 - f5.8
Metering
Multi, Center-weighted, Spot
Centre weighted, Evaluative, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
1 sec
15 sec
Max. shutter speed
1/1500 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
None
White balance presets
5
6
Screen size
1.5"
2.5"
Screen resolution
115,000 dots
115,000 dots
Video capture
Max. video resolution
Storage types
SD/MMC card
SDHC, Secure Digital
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA (2) batteries (NiMH recommended)
2 x AA batteries (Alkaline or NiMH)
Weight
255 g
135 g
Dimensions
107 x 53 x 37 mm
94 x 62 x 31 mm
Year
2004
2010
Choose cameras to compare
Popular comparisons:
- Canon PowerShot A400 vs. Nikon Coolpix 2500
- Canon PowerShot A400 vs. Canon PowerShot A460
- Canon PowerShot A400 vs. Canon PowerShot A3400 IS
- Canon PowerShot A400 vs. Sony Cyber-shot DSC-W730
- Canon PowerShot A400 vs. Sony Cyber-shot DSC-P31
- Canon PowerShot A400 vs. Sony Cyber-shot DSC-P92
- Canon PowerShot A400 vs. Canon EOS 5D Mark II
- Canon PowerShot A400 vs. Nikon Coolpix L330
- Canon PowerShot A400 vs. Nikon Coolpix P530
- Canon PowerShot A400 vs. Canon PowerShot A40
- Canon PowerShot A400 vs. Canon Digital IXUS 40
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon A400 diagonal
The diagonal of A400 sensor is not 1/3.2 or 0.31" (7.9 mm) as you might expect, but approximately two thirds of
that value - 5.62 mm. If you want to know why, see
sensor sizes.
w = 4.50 mm
h = 3.37 mm
w = 4.50 mm
h = 3.37 mm
Diagonal = √ | 4.50² + 3.37² | = 5.62 mm |
Canon A495 diagonal
The diagonal of A495 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
A400 sensor area
Width = 4.50 mm
Height = 3.37 mm
Surface area = 4.50 × 3.37 = 15.17 mm²
Height = 3.37 mm
Surface area = 4.50 × 3.37 = 15.17 mm²
A495 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
A400 pixel pitch
Sensor width = 4.50 mm
Sensor resolution width = 2038 pixels
Sensor resolution width = 2038 pixels
Pixel pitch = | 4.50 | × 1000 | = 2.21 µm |
2038 |
A495 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Sensor resolution width = 3647 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.69 µm |
3647 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
A400 pixel area
Pixel pitch = 2.21 µm
Pixel area = 2.21² = 4.88 µm²
Pixel area = 2.21² = 4.88 µm²
A495 pixel area
Pixel pitch = 1.69 µm
Pixel area = 1.69² = 2.86 µm²
Pixel area = 1.69² = 2.86 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
A400 pixel density
Sensor resolution width = 2038 pixels
Sensor width = 0.45 cm
Pixel density = (2038 / 0.45)² / 1000000 = 20.51 MP/cm²
Sensor width = 0.45 cm
Pixel density = (2038 / 0.45)² / 1000000 = 20.51 MP/cm²
A495 pixel density
Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
A400 sensor resolution
Sensor width = 4.50 mm
Sensor height = 3.37 mm
Effective megapixels = 3.10
Resolution horizontal: X × r = 1521 × 1.34 = 2038
Resolution vertical: X = 1521
Sensor resolution = 2038 x 1521
Sensor height = 3.37 mm
Effective megapixels = 3.10
r = 4.50/3.37 = 1.34 |
|
Resolution vertical: X = 1521
Sensor resolution = 2038 x 1521
A495 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 2742
Sensor resolution = 3647 x 2742
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
A400 crop factor
Sensor diagonal in mm = 5.62 mm
Crop factor = | 43.27 | = 7.7 |
5.62 |
A495 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
A400 equivalent aperture
Crop factor = 7.7
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 7.7 = f21.6 - f37.7
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 7.7 = f21.6 - f37.7
A495 equivalent aperture
Crop factor = 5.62
Aperture = f3.0 - f5.8
35-mm equivalent aperture = (f3.0 - f5.8) × 5.62 = f16.9 - f32.6
Aperture = f3.0 - f5.8
35-mm equivalent aperture = (f3.0 - f5.8) × 5.62 = f16.9 - f32.6
More comparisons of Canon A400:
- Canon PowerShot A400 vs. Canon IXUS 132
- Canon PowerShot A400 vs. Nikon Coolpix S33
- Canon PowerShot A400 vs. Sony Cyber-shot DSC-W690
- Canon PowerShot A400 vs. Olympus SP 800 UZ
- Canon PowerShot A400 vs. Canon PowerShot A410
- Canon PowerShot A400 vs. Olympus C-60 Zoom
- Canon PowerShot A400 vs. Canon PowerShot A495
- Canon PowerShot A400 vs. Canon PowerShot A470
- Canon PowerShot A400 vs. Nokia Lumia 1020
- Canon PowerShot A400 vs. Canon PowerShot SX230 HS
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.