Canon PowerShot S110 DIGITAL ELPH vs. Casio Exilim EX-H20G
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon PowerShot S110 DIGITAL ELPH | Casio Exilim EX-H20G | ||||
check price » | check price » |
Megapixels
2.02
14.10
Max. image resolution
1600 x 1200
4320 x 3240
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.7" (~ 5.33 x 4 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.33 |
(ratio) | ||
Canon PowerShot S110 DIGITAL ELPH | Casio Exilim EX-H20G |
Surface area:
21.32 mm² | vs | 28.46 mm² |
Difference: 7.14 mm² (33%)
H20G sensor is approx. 1.33x bigger than S110 DIGITAL ELPH sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 9 years between Canon S110 DIGITAL ELPH (2001) and Casio H20G (2010).
Nine years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.54 µm² (423%)
A pixel on Canon S110 DIGITAL ELPH sensor is approx. 423% bigger than a pixel on Casio H20G.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon S110 DIGITAL ELPH
Casio H20G
Total megapixels
2.11
14.50
Effective megapixels
2.02
14.10
Optical zoom
2x
10x
Digital zoom
Yes
Yes
ISO sensitivity
100, 150
Auto, 80, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
57 cm
15 cm
Macro focus range
10 cm
7 cm
Focal length (35mm equiv.)
35 - 70 mm
24 - 240 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4
f3.2 - f5.7
Metering
Centre weighted
Centre weighted, Multi-pattern, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
1 sec
4 sec
Max. shutter speed
1/1500 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical
None
White balance presets
5
6
Screen size
1.5"
3"
Screen resolution
120,000 dots
460,800 dots
Video capture
Max. video resolution
Storage types
CompactFlash type I
SDHC, Secure Digital
USB
USB 1.1
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Canon Lithium-Ion
Lithium-Ion NP-90 battery
Weight
250 g
172 g
Dimensions
87 x 57 x 26.9 mm
103 x 68 x 29 mm
Year
2001
2010
Choose cameras to compare
Popular comparisons:
- Canon PowerShot S110 DIGITAL ELPH vs. Canon IXUS 180
- Canon PowerShot S110 DIGITAL ELPH vs. Canon PowerShot SD110
- Canon PowerShot S110 DIGITAL ELPH vs. Canon IXUS 285 HS
- Canon PowerShot S110 DIGITAL ELPH vs. Panasonic Lumix DMC-TZ60
- Canon PowerShot S110 DIGITAL ELPH vs. Canon IXUS 175
- Canon PowerShot S110 DIGITAL ELPH vs. Canon PowerShot ELPH 110 HS
- Canon PowerShot S110 DIGITAL ELPH vs. Panasonic Lumix DMC-TZ70
- Canon PowerShot S110 DIGITAL ELPH vs. Nikon Coolpix AW110
- Canon PowerShot S110 DIGITAL ELPH vs. Canon PowerShot S100 DIGITAL ELPH
- Canon PowerShot S110 DIGITAL ELPH vs. Nokia Lumia 1020
- Canon PowerShot S110 DIGITAL ELPH vs. Canon PowerShot G9 X Mark II
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon S110 DIGITAL ELPH diagonal
The diagonal of S110 DIGITAL ELPH sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of
that value - 6.66 mm. If you want to know why, see
sensor sizes.
w = 5.33 mm
h = 4.00 mm
w = 5.33 mm
h = 4.00 mm
Diagonal = √ | 5.33² + 4.00² | = 6.66 mm |
Casio H20G diagonal
The diagonal of H20G sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
S110 DIGITAL ELPH sensor area
Width = 5.33 mm
Height = 4.00 mm
Surface area = 5.33 × 4.00 = 21.32 mm²
Height = 4.00 mm
Surface area = 5.33 × 4.00 = 21.32 mm²
H20G sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
S110 DIGITAL ELPH pixel pitch
Sensor width = 5.33 mm
Sensor resolution width = 1639 pixels
Sensor resolution width = 1639 pixels
Pixel pitch = | 5.33 | × 1000 | = 3.25 µm |
1639 |
H20G pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4330 pixels
Sensor resolution width = 4330 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.42 µm |
4330 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
S110 DIGITAL ELPH pixel area
Pixel pitch = 3.25 µm
Pixel area = 3.25² = 10.56 µm²
Pixel area = 3.25² = 10.56 µm²
H20G pixel area
Pixel pitch = 1.42 µm
Pixel area = 1.42² = 2.02 µm²
Pixel area = 1.42² = 2.02 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
S110 DIGITAL ELPH pixel density
Sensor resolution width = 1639 pixels
Sensor width = 0.533 cm
Pixel density = (1639 / 0.533)² / 1000000 = 9.46 MP/cm²
Sensor width = 0.533 cm
Pixel density = (1639 / 0.533)² / 1000000 = 9.46 MP/cm²
H20G pixel density
Sensor resolution width = 4330 pixels
Sensor width = 0.616 cm
Pixel density = (4330 / 0.616)² / 1000000 = 49.41 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4330 / 0.616)² / 1000000 = 49.41 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
S110 DIGITAL ELPH sensor resolution
Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 2.02
Resolution horizontal: X × r = 1232 × 1.33 = 1639
Resolution vertical: X = 1232
Sensor resolution = 1639 x 1232
Sensor height = 4.00 mm
Effective megapixels = 2.02
r = 5.33/4.00 = 1.33 |
|
Resolution vertical: X = 1232
Sensor resolution = 1639 x 1232
H20G sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.10
Resolution horizontal: X × r = 3256 × 1.33 = 4330
Resolution vertical: X = 3256
Sensor resolution = 4330 x 3256
Sensor height = 4.62 mm
Effective megapixels = 14.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3256
Sensor resolution = 4330 x 3256
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
S110 DIGITAL ELPH crop factor
Sensor diagonal in mm = 6.66 mm
Crop factor = | 43.27 | = 6.5 |
6.66 |
H20G crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
S110 DIGITAL ELPH equivalent aperture
Crop factor = 6.5
Aperture = f2.8 - f4
35-mm equivalent aperture = (f2.8 - f4) × 6.5 = f18.2 - f26
Aperture = f2.8 - f4
35-mm equivalent aperture = (f2.8 - f4) × 6.5 = f18.2 - f26
H20G equivalent aperture
Crop factor = 5.62
Aperture = f3.2 - f5.7
35-mm equivalent aperture = (f3.2 - f5.7) × 5.62 = f18 - f32
Aperture = f3.2 - f5.7
35-mm equivalent aperture = (f3.2 - f5.7) × 5.62 = f18 - f32
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.