Canon PowerShot S330 DIGITAL ELPH vs. Pentax Q10

Comparison

change cameras »
PowerShot S330 DIGITAL ELPH image
vs
Q10 image
Canon PowerShot S330 DIGITAL ELPH Pentax Q10
check price » check price »
Megapixels
2.00
12.40
Max. image resolution
1600 x 1200
4000 x 3000

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.7" (~ 5.33 x 4 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
1631 x 1226
4060 x 3053
Diagonal
6.66 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.33
(ratio)
Canon PowerShot S330 DIGITAL ELPH Pentax Q10
Surface area:
21.32 mm² vs 28.46 mm²
Difference: 7.14 mm² (33%)
Q10 sensor is approx. 1.33x bigger than S330 DIGITAL ELPH sensor.
Note: You are comparing sensors of very different generations. There is a gap of 10 years between Canon S330 DIGITAL ELPH (2002) and Pentax Q10 (2012). Ten years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
3.27 µm
1.52 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.75 µm (115%)
Pixel pitch of S330 DIGITAL ELPH is approx. 115% higher than pixel pitch of Q10.
Pixel area
10.69 µm²
2.31 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.38 µm² (363%)
A pixel on Canon S330 DIGITAL ELPH sensor is approx. 363% bigger than a pixel on Pentax Q10.
Pixel density
9.36 MP/cm²
43.44 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 34.08 µm (364%)
Pentax Q10 has approx. 364% higher pixel density than Canon S330 DIGITAL ELPH.
To learn about the accuracy of these numbers, click here.



Specs

Canon S330 DIGITAL ELPH
Pentax Q10
Crop factor
6.5
5.62
Total megapixels
2.10
12.70
Effective megapixels
2.00
12.40
Optical zoom
3x
Digital zoom
Yes
No
ISO sensitivity
Auto, 50, 100, 200, 400
Auto, 100 - 6400
RAW
Manual focus
Normal focus range
76 cm
Macro focus range
16 cm
Focal length (35mm equiv.)
35 - 105 mm
Aperture priority
No
Yes
Max. aperture
f2.7 - f4.7
Max. aperture (35mm equiv.)
f17.6 - f30.6
n/a
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/1500 sec
1/8000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (optional)
White balance presets
6
9
Screen size
1.5"
3"
Screen resolution
118,000 dots
460,000 dots
Video capture
Max. video resolution
Storage types
Compact Flash (Type I)
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Canon NB-L1H 840 mAh Lithium-Ion
Lithium-Ion D-LI68 rechargeable battery
Weight
274 g
200 g
Dimensions
95 x 63 x 32 mm
102 x 58 x 34 mm
Year
2002
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon S330 DIGITAL ELPH diagonal

The diagonal of S330 DIGITAL ELPH sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of that value - 6.66 mm. If you want to know why, see sensor sizes.

w = 5.33 mm
h = 4.00 mm
Diagonal =  5.33² + 4.00²   = 6.66 mm

Pentax Q10 diagonal

The diagonal of Q10 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

S330 DIGITAL ELPH sensor area

Width = 5.33 mm
Height = 4.00 mm

Surface area = 5.33 × 4.00 = 21.32 mm²

Q10 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

S330 DIGITAL ELPH pixel pitch

Sensor width = 5.33 mm
Sensor resolution width = 1631 pixels
Pixel pitch =   5.33  × 1000  = 3.27 µm
1631

Q10 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4060 pixels
Pixel pitch =   6.16  × 1000  = 1.52 µm
4060


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

S330 DIGITAL ELPH pixel area

Pixel pitch = 3.27 µm

Pixel area = 3.27² = 10.69 µm²

Q10 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

S330 DIGITAL ELPH pixel density

Sensor resolution width = 1631 pixels
Sensor width = 0.533 cm

Pixel density = (1631 / 0.533)² / 1000000 = 9.36 MP/cm²

Q10 pixel density

Sensor resolution width = 4060 pixels
Sensor width = 0.616 cm

Pixel density = (4060 / 0.616)² / 1000000 = 43.44 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

S330 DIGITAL ELPH sensor resolution

Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 2.00
r = 5.33/4.00 = 1.33
X =  2.00 × 1000000  = 1226
1.33
Resolution horizontal: X × r = 1226 × 1.33 = 1631
Resolution vertical: X = 1226

Sensor resolution = 1631 x 1226

Q10 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.40
r = 6.16/4.62 = 1.33
X =  12.40 × 1000000  = 3053
1.33
Resolution horizontal: X × r = 3053 × 1.33 = 4060
Resolution vertical: X = 3053

Sensor resolution = 4060 x 3053


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


S330 DIGITAL ELPH crop factor

Sensor diagonal in mm = 6.66 mm
Crop factor =   43.27  = 6.5
6.66

Q10 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

S330 DIGITAL ELPH equivalent aperture

Crop factor = 6.5
Aperture = f2.7 - f4.7

35-mm equivalent aperture = (f2.7 - f4.7) × 6.5 = f17.6 - f30.6

Q10 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Pentax Q10, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Pentax Q10 is 5.62

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.