Canon PowerShot S5 IS vs. Fujifilm FinePix S2980

Comparison

change cameras »
PowerShot S5 IS image
vs
FinePix S2980 image
Canon PowerShot S5 IS Fujifilm FinePix S2980
check price » check price »
Megapixels
8.00
14.00
Max. image resolution
3264 x 2448
4288 x 3216

Sensor

Sensor type
CCD
n/a
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
3262 x 2453
4315 x 3244
Diagonal
7.19 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.15
(ratio)
Canon PowerShot S5 IS Fujifilm FinePix S2980
Surface area:
24.84 mm² vs 28.46 mm²
Difference: 3.62 mm² (15%)
S2980 sensor is approx. 1.15x bigger than S5 IS sensor.
Note: You are comparing cameras of different generations. There is a 4 year gap between Canon S5 IS (2007) and Fujifilm S2980 (2011). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.76 µm
1.43 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.33 µm (23%)
Pixel pitch of S5 IS is approx. 23% higher than pixel pitch of S2980.
Pixel area
3.1 µm²
2.04 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.06 µm² (52%)
A pixel on Canon S5 IS sensor is approx. 52% bigger than a pixel on Fujifilm S2980.
Pixel density
32.18 MP/cm²
49.07 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 16.89 µm (52%)
Fujifilm S2980 has approx. 52% higher pixel density than Canon S5 IS.
To learn about the accuracy of these numbers, click here.



Specs

Canon S5 IS
Fujifilm S2980
Crop factor
6.02
5.62
Total megapixels
8.20
Effective megapixels
8.00
Optical zoom
12x
Digital zoom
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
Focal length (35mm equiv.)
36 - 432 mm
Aperture priority
Yes
Max. aperture
f2.7 - f3.5
Max. aperture (35mm equiv.)
f16.3 - f21.1
n/a
Metering
Centre weighted, Evaluative, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Min. shutter speed
15 sec
Max. shutter speed
1/3200 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
6
Screen size
2.5"
Screen resolution
207,000 dots
Video capture
Max. video resolution
Storage types
MultiMedia, SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA (4) batteries (NiMH recommended)
Weight
450 g
Dimensions
117 x 80 x 78 mm
Year
2007
2011




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon S5 IS diagonal

The diagonal of S5 IS sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Fujifilm S2980 diagonal

The diagonal of S2980 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

S5 IS sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

S2980 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

S5 IS pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3262 pixels
Pixel pitch =   5.75  × 1000  = 1.76 µm
3262

S2980 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4315 pixels
Pixel pitch =   6.16  × 1000  = 1.43 µm
4315


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

S5 IS pixel area

Pixel pitch = 1.76 µm

Pixel area = 1.76² = 3.1 µm²

S2980 pixel area

Pixel pitch = 1.43 µm

Pixel area = 1.43² = 2.04 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

S5 IS pixel density

Sensor resolution width = 3262 pixels
Sensor width = 0.575 cm

Pixel density = (3262 / 0.575)² / 1000000 = 32.18 MP/cm²

S2980 pixel density

Sensor resolution width = 4315 pixels
Sensor width = 0.616 cm

Pixel density = (4315 / 0.616)² / 1000000 = 49.07 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

S5 IS sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 8.00
r = 5.75/4.32 = 1.33
X =  8.00 × 1000000  = 2453
1.33
Resolution horizontal: X × r = 2453 × 1.33 = 3262
Resolution vertical: X = 2453

Sensor resolution = 3262 x 2453

S2980 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.00
r = 6.16/4.62 = 1.33
X =  14.00 × 1000000  = 3244
1.33
Resolution horizontal: X × r = 3244 × 1.33 = 4315
Resolution vertical: X = 3244

Sensor resolution = 4315 x 3244


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


S5 IS crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

S2980 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

S5 IS equivalent aperture

Crop factor = 6.02
Aperture = f2.7 - f3.5

35-mm equivalent aperture = (f2.7 - f3.5) × 6.02 = f16.3 - f21.1

S2980 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Fujifilm S2980, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Fujifilm S2980 is 5.62

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.