Canon PowerShot SD630 vs. Pentax 645Z

Comparison

change cameras »
PowerShot SD630 image
vs
645Z image
Canon PowerShot SD630 Pentax 645Z
check price » check price »
Megapixels
6.00
51.40
Max. image resolution
2816 x 2112
8256 x 6192

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
44 x 33 mm
Sensor resolution
2825 x 2124
8269 x 6217
Diagonal
7.19 mm
55.00 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 58.45
(ratio)
Canon PowerShot SD630 Pentax 645Z
Surface area:
24.84 mm² vs 1452.00 mm²
Difference: 1427.16 mm² (5745%)
645Z sensor is approx. 58.45x bigger than SD630 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 8 years between Canon SD630 (2006) and Pentax 645Z (2014). Eight years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
2.04 µm
5.32 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 3.28 µm (161%)
Pixel pitch of 645Z is approx. 161% higher than pixel pitch of SD630.
Pixel area
4.16 µm²
28.3 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 24.14 µm² (580%)
A pixel on Pentax 645Z sensor is approx. 580% bigger than a pixel on Canon SD630.
Pixel density
24.14 MP/cm²
3.53 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 20.61 µm (584%)
Canon SD630 has approx. 584% higher pixel density than Pentax 645Z.
To learn about the accuracy of these numbers, click here.



Specs

Canon SD630
Pentax 645Z
Crop factor
6.02
0.79
Total megapixels
6.20
52.99
Effective megapixels
6.00
51.40
Optical zoom
3x
Digital zoom
Yes
ISO sensitivity
Auto, 80 ,100, 200, 400, 800
Auto, 100-204800
RAW
Manual focus
Normal focus range
30 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
35 - 105 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.9
Max. aperture (35mm equiv.)
f16.9 - f29.5
n/a
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/1500 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Optical (pentaprism)
White balance presets
5
10
Screen size
3"
3.2"
Screen resolution
173,000 dots
1,037,000 dots
Video capture
Max. video resolution
1920x1080 (60i/50i/30p/25p/24p)
Storage types
SD/MMC card
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 3.0 (5 GBit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion NB-4L battery
Rechargeable Lithium-ion Battery D-LI90
Weight
175 g
1550 g
Dimensions
90 x 57 x 20 mm
156 x 117 x 123 mm
Year
2006
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Canon SD630 diagonal

The diagonal of SD630 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Pentax 645Z diagonal

w = 44.00 mm
h = 33.00 mm
Diagonal =  44.00² + 33.00²   = 55.00 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

SD630 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

645Z sensor area

Width = 44.00 mm
Height = 33.00 mm

Surface area = 44.00 × 33.00 = 1452.00 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

SD630 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2825 pixels
Pixel pitch =   5.75  × 1000  = 2.04 µm
2825

645Z pixel pitch

Sensor width = 44.00 mm
Sensor resolution width = 8269 pixels
Pixel pitch =   44.00  × 1000  = 5.32 µm
8269


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

SD630 pixel area

Pixel pitch = 2.04 µm

Pixel area = 2.04² = 4.16 µm²

645Z pixel area

Pixel pitch = 5.32 µm

Pixel area = 5.32² = 28.3 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

SD630 pixel density

Sensor resolution width = 2825 pixels
Sensor width = 0.575 cm

Pixel density = (2825 / 0.575)² / 1000000 = 24.14 MP/cm²

645Z pixel density

Sensor resolution width = 8269 pixels
Sensor width = 4.4 cm

Pixel density = (8269 / 4.4)² / 1000000 = 3.53 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

SD630 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 6.00
r = 5.75/4.32 = 1.33
X =  6.00 × 1000000  = 2124
1.33
Resolution horizontal: X × r = 2124 × 1.33 = 2825
Resolution vertical: X = 2124

Sensor resolution = 2825 x 2124

645Z sensor resolution

Sensor width = 44.00 mm
Sensor height = 33.00 mm
Effective megapixels = 51.40
r = 44.00/33.00 = 1.33
X =  51.40 × 1000000  = 6217
1.33
Resolution horizontal: X × r = 6217 × 1.33 = 8269
Resolution vertical: X = 6217

Sensor resolution = 8269 x 6217


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


SD630 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

645Z crop factor

Sensor diagonal in mm = 55.00 mm
Crop factor =   43.27  = 0.79
55.00

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

SD630 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 6.02 = f16.9 - f29.5

645Z equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Pentax 645Z, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Pentax 645Z is 0.79

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.