Canon EOS R6 Mark II vs. Sony Cyber-shot DSC-RX100 VII
Comparison
change cameras » | |||||
|
vs |
|
|||
Canon EOS R6 Mark II | Sony Cyber-shot DSC-RX100 VII | ||||
check price » | check price » |
Megapixels
24.20
20.10
Max. image resolution
6000 x 4000
5472 x 3648
Sensor
Sensor type
CMOS
CMOS
Sensor size
35.9 x 23.9 mm
13.2 x 8.8 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
7.39 | : | 1 |
(ratio) | ||
Canon EOS R6 Mark II | Sony Cyber-shot DSC-RX100 VII |
Surface area:
858.01 mm² | vs | 116.16 mm² |
Difference: 741.85 mm² (639%)
R6 Mark II sensor is approx. 7.39x bigger than RX100 VII sensor.
Note: You are comparing cameras of different generations.
There is a 3 year gap between Canon R6 Mark II (2022) and Sony RX100 VII (2019).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 29.76 µm² (517%)
A pixel on Canon R6 Mark II sensor is approx. 517% bigger than a pixel on Sony RX100 VII.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Canon R6 Mark II
Sony RX100 VII
Total megapixels
25.60
Effective megapixels
24.20
20.10
Optical zoom
8x
Digital zoom
Yes
ISO sensitivity
Auto, 100-102400 (extends to 50-204800)
Auto, 125-12800 (extends to 64-25600)
RAW
Manual focus
Normal focus range
8 cm
Macro focus range
Focal length (35mm equiv.)
24 - 200 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f4.5
Metering
Multi, Center-weighted, Spot, Partial
Multi, Center-weighted, Highlight-weighted, Average, Spot
Exposure compensation
±3 EV (in 1/3 EV, 1/2 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/8000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
8
8
Screen size
3"
3"
Screen resolution
1,620,000 dots
921,600 dots
Video capture
Max. video resolution
3840x2160 (60p/50p/30p/24p/23.98p)
3840x2160 (30p/25p/24p)
Storage types
SD/SDHC/SDXC, UHS-II
SD/ SDHC/SDXC, MS Pro Duo
USB
USB 3.0 (5 GBit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
LP-E6NH lithium-ion battery
NP-BX1 lithium-ion battery
Weight
670 g
302 g
Dimensions
138.4 x 98.4 x 88.4 mm
101.6 x 58.1 x 42.8 mm
Year
2022
2019
Choose cameras to compare
Popular comparisons:
- Canon EOS R6 Mark II vs. Canon EOS R5
- Canon EOS R6 Mark II vs. Canon EOS 5D Mark III
- Canon EOS R6 Mark II vs. Canon EOS R10
- Canon EOS R6 Mark II vs. Nikon Z6 II
- Canon EOS R6 Mark II vs. Canon EOS R6
- Canon EOS R6 Mark II vs. Canon EOS 5D Mark IV
- Canon EOS R6 Mark II vs. Canon EOS R3
- Canon EOS R6 Mark II vs. Canon EOS 6D Mark II
- Canon EOS R6 Mark II vs. Sony A7 IV
- Canon EOS R6 Mark II vs. Canon EOS R
- Canon EOS R6 Mark II vs. Canon EOS R7
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Canon R6 Mark II diagonal
w = 35.90 mm
h = 23.90 mm
h = 23.90 mm
Diagonal = √ | 35.90² + 23.90² | = 43.13 mm |
Sony RX100 VII diagonal
w = 13.20 mm
h = 8.80 mm
h = 8.80 mm
Diagonal = √ | 13.20² + 8.80² | = 15.86 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
R6 Mark II sensor area
Width = 35.90 mm
Height = 23.90 mm
Surface area = 35.90 × 23.90 = 858.01 mm²
Height = 23.90 mm
Surface area = 35.90 × 23.90 = 858.01 mm²
RX100 VII sensor area
Width = 13.20 mm
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
R6 Mark II pixel pitch
Sensor width = 35.90 mm
Sensor resolution width = 6026 pixels
Sensor resolution width = 6026 pixels
Pixel pitch = | 35.90 | × 1000 | = 5.96 µm |
6026 |
RX100 VII pixel pitch
Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Sensor resolution width = 5492 pixels
Pixel pitch = | 13.20 | × 1000 | = 2.4 µm |
5492 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
R6 Mark II pixel area
Pixel pitch = 5.96 µm
Pixel area = 5.96² = 35.52 µm²
Pixel area = 5.96² = 35.52 µm²
RX100 VII pixel area
Pixel pitch = 2.4 µm
Pixel area = 2.4² = 5.76 µm²
Pixel area = 2.4² = 5.76 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
R6 Mark II pixel density
Sensor resolution width = 6026 pixels
Sensor width = 3.59 cm
Pixel density = (6026 / 3.59)² / 1000000 = 2.82 MP/cm²
Sensor width = 3.59 cm
Pixel density = (6026 / 3.59)² / 1000000 = 2.82 MP/cm²
RX100 VII pixel density
Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm
Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²
Sensor width = 1.32 cm
Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
R6 Mark II sensor resolution
Sensor width = 35.90 mm
Sensor height = 23.90 mm
Effective megapixels = 24.20
Resolution horizontal: X × r = 4017 × 1.5 = 6026
Resolution vertical: X = 4017
Sensor resolution = 6026 x 4017
Sensor height = 23.90 mm
Effective megapixels = 24.20
r = 35.90/23.90 = 1.5 |
|
Resolution vertical: X = 4017
Sensor resolution = 6026 x 4017
RX100 VII sensor resolution
Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661
Sensor resolution = 5492 x 3661
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5 |
|
Resolution vertical: X = 3661
Sensor resolution = 5492 x 3661
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
R6 Mark II crop factor
Sensor diagonal in mm = 43.13 mm
Crop factor = | 43.27 | = 1 |
43.13 |
RX100 VII crop factor
Sensor diagonal in mm = 15.86 mm
Crop factor = | 43.27 | = 2.73 |
15.86 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
R6 Mark II equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon R6 Mark II, take the aperture of the lens
you're using and multiply it with crop factor.
Since crop factor for Canon R6 Mark II is 1, the equivalent aperture is aperture.
Since crop factor for Canon R6 Mark II is 1, the equivalent aperture is aperture.
RX100 VII equivalent aperture
Crop factor = 2.73
Aperture = f2.8 - f4.5
35-mm equivalent aperture = (f2.8 - f4.5) × 2.73 = f7.6 - f12.3
Aperture = f2.8 - f4.5
35-mm equivalent aperture = (f2.8 - f4.5) × 2.73 = f7.6 - f12.3
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.