Fujifilm FinePix J27 vs. Fujifilm X100T

Comparison

change cameras »
FinePix J27 image
vs
X100T image
Fujifilm FinePix J27 Fujifilm X100T
check price » check price »
Megapixels
10.00
16.30
Max. image resolution
3664 x 2748
4896 x 3264

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
23.6 x 15.6 mm
Sensor resolution
3647 x 2742
4962 x 3286
Diagonal
7.70 mm
28.29 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 12.94
(ratio)
Fujifilm FinePix J27 Fujifilm X100T
Surface area:
28.46 mm² vs 368.16 mm²
Difference: 339.7 mm² (1194%)
X100T sensor is approx. 12.94x bigger than J27 sensor.
Note: You are comparing cameras of different generations. There is a 5 year gap between Fujifilm J27 (2009) and Fujifilm X100T (2014). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.69 µm
4.76 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 3.07 µm (182%)
Pixel pitch of X100T is approx. 182% higher than pixel pitch of J27.
Pixel area
2.86 µm²
22.66 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 19.8 µm² (692%)
A pixel on Fujifilm X100T sensor is approx. 692% bigger than a pixel on Fujifilm J27.
Pixel density
35.05 MP/cm²
4.42 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 30.63 µm (693%)
Fujifilm J27 has approx. 693% higher pixel density than Fujifilm X100T.
To learn about the accuracy of these numbers, click here.



Specs

Fujifilm J27
Fujifilm X100T
Crop factor
5.62
1.53
Total megapixels
Effective megapixels
16.30
Optical zoom
Yes
1x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200
Auto, 200-6400 (expandable to 100, 12800, 25600 and 51200)
RAW
Manual focus
Normal focus range
60 cm
50 cm
Macro focus range
10 cm
10 cm
Focal length (35mm equiv.)
32 - 96 mm
35 mm
Aperture priority
No
Yes
Max. aperture
f2.9 - f5.2
f2.0
Max. aperture (35mm equiv.)
f16.3 - f29.2
f3.1
Metering
TTL 256-zones metering
Multi, Spot, Average
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
8 sec
30 sec
Max. shutter speed
1/1400 sec
1/32000 sec
Built-in flash
External flash
Viewfinder
None
Hybrid Optical/Electronic
White balance presets
6
7
Screen size
2.7"
3"
Screen resolution
230,000 dots
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (60p/50p/30p/25p/24p)
Storage types
SDHC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
NP-95 Li-ion battery
Weight
113 g
440 g
Dimensions
92 x 55.9 x 20 mm
126.5 x 74.4 x 52.4 mm
Year
2009
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Fujifilm J27 diagonal

The diagonal of J27 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Fujifilm X100T diagonal

w = 23.60 mm
h = 15.60 mm
Diagonal =  23.60² + 15.60²   = 28.29 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

J27 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

X100T sensor area

Width = 23.60 mm
Height = 15.60 mm

Surface area = 23.60 × 15.60 = 368.16 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

J27 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 3647 pixels
Pixel pitch =   6.16  × 1000  = 1.69 µm
3647

X100T pixel pitch

Sensor width = 23.60 mm
Sensor resolution width = 4962 pixels
Pixel pitch =   23.60  × 1000  = 4.76 µm
4962


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

J27 pixel area

Pixel pitch = 1.69 µm

Pixel area = 1.69² = 2.86 µm²

X100T pixel area

Pixel pitch = 4.76 µm

Pixel area = 4.76² = 22.66 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

J27 pixel density

Sensor resolution width = 3647 pixels
Sensor width = 0.616 cm

Pixel density = (3647 / 0.616)² / 1000000 = 35.05 MP/cm²

X100T pixel density

Sensor resolution width = 4962 pixels
Sensor width = 2.36 cm

Pixel density = (4962 / 2.36)² / 1000000 = 4.42 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

J27 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 10.00
r = 6.16/4.62 = 1.33
X =  10.00 × 1000000  = 2742
1.33
Resolution horizontal: X × r = 2742 × 1.33 = 3647
Resolution vertical: X = 2742

Sensor resolution = 3647 x 2742

X100T sensor resolution

Sensor width = 23.60 mm
Sensor height = 15.60 mm
Effective megapixels = 16.30
r = 23.60/15.60 = 1.51
X =  16.30 × 1000000  = 3286
1.51
Resolution horizontal: X × r = 3286 × 1.51 = 4962
Resolution vertical: X = 3286

Sensor resolution = 4962 x 3286


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


J27 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

X100T crop factor

Sensor diagonal in mm = 28.29 mm
Crop factor =   43.27  = 1.53
28.29

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

J27 equivalent aperture

Crop factor = 5.62
Aperture = f2.9 - f5.2

35-mm equivalent aperture = (f2.9 - f5.2) × 5.62 = f16.3 - f29.2

X100T equivalent aperture

Crop factor = 1.53
Aperture = f2.0

35-mm equivalent aperture = (f2.0) × 1.53 = f3.1

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.