Fujifilm FinePix S1600 vs. Canon PowerShot SX240 HS
Comparison
change cameras » | |||||
|
vs |
|
|||
Fujifilm FinePix S1600 | Canon PowerShot SX240 HS | ||||
check price » | check price » |
Megapixels
12.20
12.10
Max. image resolution
4000 x 3000
4000 x 3000
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1 |
(ratio) | ||
Fujifilm FinePix S1600 | Canon PowerShot SX240 HS |
Surface area:
28.46 mm² | vs | 28.46 mm² |
Difference: 0 mm² (0%)
S1600 and SX240 HS sensors are the same size.
Note: You are comparing cameras of different generations.
There is a 2 year gap between Fujifilm S1600 (2010) and Canon SX240 HS (2012).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.03 µm² (1%)
A pixel on Canon SX240 HS sensor is approx. 1% bigger than a pixel on Fujifilm S1600.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Fujifilm S1600
Canon SX240 HS
Total megapixels
Effective megapixels
12.20
12.10
Optical zoom
15x
20x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 64, 100, 200, 400, 800, 1600, 3200, 6400
Auto
RAW
Manual focus
Normal focus range
40 cm
45 cm
Macro focus range
2 cm
5 cm
Focal length (35mm equiv.)
28 - 420 mm
25 - 500 mm
Aperture priority
Yes
No
Max. aperture
f3.1 - f5.6
f3.5 - f6.8
Metering
Multi
Centre weighted, Evaluative, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
No
Min. shutter speed
8 sec
15 sec
Max. shutter speed
1/2000 sec
1/3200 sec
Built-in flash
External flash
Viewfinder
Electronic
None
White balance presets
6
7
Screen size
3"
3"
Screen resolution
230,000 dots
461,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
4 x AA batteries (Alkaline, NiMH or Lithium)
Lithium-Ion NB-6L rechargeable battery
Weight
337 g
224 g
Dimensions
110.2 x 73.4 x 81.4 mm
105.5 x 61.0 x 32.7 mm
Year
2010
2012
Choose cameras to compare
Popular comparisons:
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S2980
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S1800
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S5600 Zoom
- Fujifilm FinePix S1600 vs. Canon EOS 450D
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S2000hd
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S5700 Zoom
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S5800
- Fujifilm FinePix S1600 vs. Canon PowerShot SX240 HS
- Fujifilm FinePix S1600 vs. Nokia Lumia 1020
- Fujifilm FinePix S1600 vs. Fujifilm FinePix S2950
- Fujifilm FinePix S1600 vs. Nikon Coolpix L330
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Fujifilm S1600 diagonal
The diagonal of S1600 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Canon SX240 HS diagonal
The diagonal of SX240 HS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
S1600 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
SX240 HS sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
S1600 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4029 pixels
Sensor resolution width = 4029 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.53 µm |
4029 |
SX240 HS pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4011 pixels
Sensor resolution width = 4011 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.54 µm |
4011 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
S1600 pixel area
Pixel pitch = 1.53 µm
Pixel area = 1.53² = 2.34 µm²
Pixel area = 1.53² = 2.34 µm²
SX240 HS pixel area
Pixel pitch = 1.54 µm
Pixel area = 1.54² = 2.37 µm²
Pixel area = 1.54² = 2.37 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
S1600 pixel density
Sensor resolution width = 4029 pixels
Sensor width = 0.616 cm
Pixel density = (4029 / 0.616)² / 1000000 = 42.78 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4029 / 0.616)² / 1000000 = 42.78 MP/cm²
SX240 HS pixel density
Sensor resolution width = 4011 pixels
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
S1600 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.20
Resolution horizontal: X × r = 3029 × 1.33 = 4029
Resolution vertical: X = 3029
Sensor resolution = 4029 x 3029
Sensor height = 4.62 mm
Effective megapixels = 12.20
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3029
Sensor resolution = 4029 x 3029
SX240 HS sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.10
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
Sensor height = 4.62 mm
Effective megapixels = 12.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
S1600 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
SX240 HS crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
S1600 equivalent aperture
Crop factor = 5.62
Aperture = f3.1 - f5.6
35-mm equivalent aperture = (f3.1 - f5.6) × 5.62 = f17.4 - f31.5
Aperture = f3.1 - f5.6
35-mm equivalent aperture = (f3.1 - f5.6) × 5.62 = f17.4 - f31.5
SX240 HS equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f6.8
35-mm equivalent aperture = (f3.5 - f6.8) × 5.62 = f19.7 - f38.2
Aperture = f3.5 - f6.8
35-mm equivalent aperture = (f3.5 - f6.8) × 5.62 = f19.7 - f38.2
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.