Fujifilm FinePix XP130 vs. Canon PowerShot D30

Comparison

change cameras »
FinePix XP130 image
vs
PowerShot D30 image
Fujifilm FinePix XP130 Canon PowerShot D30
check price » check price »
Megapixels
16.40
12.10
Max. image resolution
4608 x 3456
4000 x 3000

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
4671 x 3512
4011 x 3016
Diagonal
7.70 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Fujifilm FinePix XP130 Canon PowerShot D30
Surface area:
28.46 mm² vs 28.46 mm²
Difference: 0 mm² (0%)
XP130 and D30 sensors are the same size.
Note: You are comparing cameras of different generations. There is a 4 year gap between Fujifilm XP130 (2018) and Canon D30 (2014). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.32 µm
1.54 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.22 µm (17%)
Pixel pitch of D30 is approx. 17% higher than pixel pitch of XP130.
Pixel area
1.74 µm²
2.37 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.63 µm² (36%)
A pixel on Canon D30 sensor is approx. 36% bigger than a pixel on Fujifilm XP130.
Pixel density
57.5 MP/cm²
42.4 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 15.1 µm (36%)
Fujifilm XP130 has approx. 36% higher pixel density than Canon D30.
To learn about the accuracy of these numbers, click here.



Specs

Fujifilm XP130
Canon D30
Crop factor
5.62
5.62
Total megapixels
16.76
12.80
Effective megapixels
16.40
12.10
Optical zoom
5x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100-3200 (6400 at low resolutions)
Auto, 100-3200
RAW
Manual focus
Normal focus range
60 cm
5 cm
Macro focus range
9 cm
1 cm
Focal length (35mm equiv.)
28 - 140 mm
28 - 140 mm
Aperture priority
No
No
Max. aperture
f3.9 - f4.9
f3.9 - f4.8
Max. aperture (35mm equiv.)
f21.9 - f27.5
f21.9 - f27
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
15 sec
Max. shutter speed
1/2000 sec
1/1600 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
7
6
Screen size
3"
3"
Screen resolution
921,600 dots
461,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
1920x1080 (24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
NP-45S lithium-ion battery
Battery Pack NB-6L/NB-6LH
Weight
207 g
218 g
Dimensions
109.6 x 71 x 27.8 mm
109.4 x 68.0 x 27.5 mm
Year
2018
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Fujifilm XP130 diagonal

The diagonal of XP130 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Canon D30 diagonal

The diagonal of D30 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

XP130 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

D30 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

XP130 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4671 pixels
Pixel pitch =   6.16  × 1000  = 1.32 µm
4671

D30 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4011 pixels
Pixel pitch =   6.16  × 1000  = 1.54 µm
4011


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

XP130 pixel area

Pixel pitch = 1.32 µm

Pixel area = 1.32² = 1.74 µm²

D30 pixel area

Pixel pitch = 1.54 µm

Pixel area = 1.54² = 2.37 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

XP130 pixel density

Sensor resolution width = 4671 pixels
Sensor width = 0.616 cm

Pixel density = (4671 / 0.616)² / 1000000 = 57.5 MP/cm²

D30 pixel density

Sensor resolution width = 4011 pixels
Sensor width = 0.616 cm

Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

XP130 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.40
r = 6.16/4.62 = 1.33
X =  16.40 × 1000000  = 3512
1.33
Resolution horizontal: X × r = 3512 × 1.33 = 4671
Resolution vertical: X = 3512

Sensor resolution = 4671 x 3512

D30 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.10
r = 6.16/4.62 = 1.33
X =  12.10 × 1000000  = 3016
1.33
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016

Sensor resolution = 4011 x 3016


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


XP130 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

D30 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

XP130 equivalent aperture

Crop factor = 5.62
Aperture = f3.9 - f4.9

35-mm equivalent aperture = (f3.9 - f4.9) × 5.62 = f21.9 - f27.5

D30 equivalent aperture

Crop factor = 5.62
Aperture = f3.9 - f4.8

35-mm equivalent aperture = (f3.9 - f4.8) × 5.62 = f21.9 - f27

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.