Jenoptik JD 4.1 zoom vs. Panasonic Lumix DMC-FX30

Comparison

change cameras »
JD 4.1 zoom image
vs
Lumix DMC-FX30 image
Jenoptik JD 4.1 zoom Panasonic Lumix DMC-FX30
check price » check price »
Megapixels
4.00
7.10
Max. image resolution
2592 x 1944
3072 x 2304

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor resolution
2306 x 1734
3072 x 2310
Diagonal
7.19 mm
7.19 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1
(ratio)
Jenoptik JD 4.1 zoom Panasonic Lumix DMC-FX30
Surface area:
24.84 mm² vs 24.84 mm²
Difference: 0 mm² (0%)
JD 4.1 zoom and FX30 sensors are the same size.
Note: You are comparing cameras of different generations. There is a 3 year gap between Jenoptik JD 4.1 zoom (2004) and Panasonic FX30 (2007). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.49 µm
1.87 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.62 µm (33%)
Pixel pitch of JD 4.1 zoom is approx. 33% higher than pixel pitch of FX30.
Pixel area
6.2 µm²
3.5 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2.7 µm² (77%)
A pixel on Jenoptik JD 4.1 zoom sensor is approx. 77% bigger than a pixel on Panasonic FX30.
Pixel density
16.08 MP/cm²
28.54 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 12.46 µm (77%)
Panasonic FX30 has approx. 77% higher pixel density than Jenoptik JD 4.1 zoom.
To learn about the accuracy of these numbers, click here.



Specs

Jenoptik JD 4.1 zoom
Panasonic FX30
Crop factor
6.02
6.02
Total megapixels
7.40
Effective megapixels
7.10
Optical zoom
Yes
3.6x
Digital zoom
Yes
Yes
ISO sensitivity
100
Auto, 100, 200, 400, 800, 1250, 3200
RAW
Manual focus
Normal focus range
50 cm
50 cm
Macro focus range
10 cm
5 cm
Focal length (35mm equiv.)
37 - 105 mm
28 - 100 mm
Aperture priority
No
No
Max. aperture
f2.9 - f5
f2.8 - f5.6
Max. aperture (35mm equiv.)
f17.5 - f30.1
f16.9 - f33.7
Metering
Multi-segment, Spot
Multi-segment
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
60 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical
None
White balance presets
4
7
Screen size
1.5"
2.5"
Screen resolution
207,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
Secure Digital
USB
USB 1.1
USB 1.0
HDMI
Wireless
GPS
Battery
2x AA
Lithium-Ion rechargeable
Weight
150 g
132 g
Dimensions
106 x 33,5 x 55,6 mm
94.9 x 51.9 x 22.0 mm
Year
2004
2007




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Jenoptik JD 4.1 zoom diagonal

The diagonal of JD 4.1 zoom sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Panasonic FX30 diagonal

The diagonal of FX30 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

JD 4.1 zoom sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

FX30 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

JD 4.1 zoom pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2306 pixels
Pixel pitch =   5.75  × 1000  = 2.49 µm
2306

FX30 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3072 pixels
Pixel pitch =   5.75  × 1000  = 1.87 µm
3072


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

JD 4.1 zoom pixel area

Pixel pitch = 2.49 µm

Pixel area = 2.49² = 6.2 µm²

FX30 pixel area

Pixel pitch = 1.87 µm

Pixel area = 1.87² = 3.5 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

JD 4.1 zoom pixel density

Sensor resolution width = 2306 pixels
Sensor width = 0.575 cm

Pixel density = (2306 / 0.575)² / 1000000 = 16.08 MP/cm²

FX30 pixel density

Sensor resolution width = 3072 pixels
Sensor width = 0.575 cm

Pixel density = (3072 / 0.575)² / 1000000 = 28.54 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

JD 4.1 zoom sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 4.00
r = 5.75/4.32 = 1.33
X =  4.00 × 1000000  = 1734
1.33
Resolution horizontal: X × r = 1734 × 1.33 = 2306
Resolution vertical: X = 1734

Sensor resolution = 2306 x 1734

FX30 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 7.10
r = 5.75/4.32 = 1.33
X =  7.10 × 1000000  = 2310
1.33
Resolution horizontal: X × r = 2310 × 1.33 = 3072
Resolution vertical: X = 2310

Sensor resolution = 3072 x 2310


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


JD 4.1 zoom crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

FX30 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

JD 4.1 zoom equivalent aperture

Crop factor = 6.02
Aperture = f2.9 - f5

35-mm equivalent aperture = (f2.9 - f5) × 6.02 = f17.5 - f30.1

FX30 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f5.6

35-mm equivalent aperture = (f2.8 - f5.6) × 6.02 = f16.9 - f33.7

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.