Jenoptik JD C 1.3 LCD vs. Samsung Galaxy Camera 2

Comparison

change cameras »
JD C 1.3 LCD image
vs
Galaxy Camera 2 image
Jenoptik JD C 1.3 LCD Samsung Galaxy Camera 2
check price » check price »
Megapixels
1.30
16.30
Max. image resolution
1600 x 1200
4608 x 3456

Sensor

Sensor type
CMOS
CMOS
Sensor size
1/2" (~ 6.4 x 4.8 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor resolution
1315 x 989
4656 x 3501
Diagonal
8.00 mm
7.70 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.08 : 1
(ratio)
Jenoptik JD C 1.3 LCD Samsung Galaxy Camera 2
Surface area:
30.72 mm² vs 28.46 mm²
Difference: 2.26 mm² (8%)
JD C 1.3 LCD sensor is approx. 1.08x bigger than Galaxy Camera 2 sensor.
Note: You are comparing sensors of vastly different generations. There is a gap of 12 years between Jenoptik JD C 1.3 LCD (2002) and Samsung Galaxy Camera 2 (2014). Twelve years is a huge amount of time, technology wise, resulting in newer sensor being much more efficient than the older one.
Pixel pitch
4.87 µm
1.32 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 3.55 µm (269%)
Pixel pitch of JD C 1.3 LCD is approx. 269% higher than pixel pitch of Galaxy Camera 2.
Pixel area
23.72 µm²
1.74 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 21.98 µm² (1263%)
A pixel on Jenoptik JD C 1.3 LCD sensor is approx. 1263% bigger than a pixel on Samsung Galaxy Camera 2.
Pixel density
4.22 MP/cm²
57.13 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 52.91 µm (1254%)
Samsung Galaxy Camera 2 has approx. 1254% higher pixel density than Jenoptik JD C 1.3 LCD.
To learn about the accuracy of these numbers, click here.



Specs

Jenoptik JD C 1.3 LCD
Samsung Galaxy Camera 2
Crop factor
5.41
5.62
Total megapixels
17.00
Effective megapixels
16.30
Optical zoom
No
21x
Digital zoom
Yes
Yes
ISO sensitivity
100
Auto, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
100 cm
80 cm
Macro focus range
20 cm
10 cm
Focal length (35mm equiv.)
46 mm
23 - 481 mm
Aperture priority
No
Yes
Max. aperture
f2.8
f2.8 - f5.9
Max. aperture (35mm equiv.)
f15.1
f15.7 - f33.2
Metering
Centre weighted
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/4 sec
16 sec
Max. shutter speed
1/4000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical
None
White balance presets
6
5
Screen size
1.5"
4.8"
Screen resolution
1,036,800 dots
Video capture
Max. video resolution
1920x1080 (30p)
Storage types
Secure Digital
micro SD/micro SDHC/micro SDXC
USB
USB 1.1
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
4x AAA
Li-on 2000mAh
Weight
110 g
283 g
Dimensions
97 x 28 x 63 mm
132.5 x 71.2 x 19.3 mm
Year
2002
2014




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Jenoptik JD C 1.3 LCD diagonal

The diagonal of JD C 1.3 LCD sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm

Samsung Galaxy Camera 2 diagonal

The diagonal of Galaxy Camera 2 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

JD C 1.3 LCD sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²

Galaxy Camera 2 sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

JD C 1.3 LCD pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 1315 pixels
Pixel pitch =   6.40  × 1000  = 4.87 µm
1315

Galaxy Camera 2 pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4656 pixels
Pixel pitch =   6.16  × 1000  = 1.32 µm
4656


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

JD C 1.3 LCD pixel area

Pixel pitch = 4.87 µm

Pixel area = 4.87² = 23.72 µm²

Galaxy Camera 2 pixel area

Pixel pitch = 1.32 µm

Pixel area = 1.32² = 1.74 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

JD C 1.3 LCD pixel density

Sensor resolution width = 1315 pixels
Sensor width = 0.64 cm

Pixel density = (1315 / 0.64)² / 1000000 = 4.22 MP/cm²

Galaxy Camera 2 pixel density

Sensor resolution width = 4656 pixels
Sensor width = 0.616 cm

Pixel density = (4656 / 0.616)² / 1000000 = 57.13 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

JD C 1.3 LCD sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 1.30
r = 6.40/4.80 = 1.33
X =  1.30 × 1000000  = 989
1.33
Resolution horizontal: X × r = 989 × 1.33 = 1315
Resolution vertical: X = 989

Sensor resolution = 1315 x 989

Galaxy Camera 2 sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.30
r = 6.16/4.62 = 1.33
X =  16.30 × 1000000  = 3501
1.33
Resolution horizontal: X × r = 3501 × 1.33 = 4656
Resolution vertical: X = 3501

Sensor resolution = 4656 x 3501


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


JD C 1.3 LCD crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

Galaxy Camera 2 crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

JD C 1.3 LCD equivalent aperture

Crop factor = 5.41
Aperture = f2.8

35-mm equivalent aperture = (f2.8) × 5.41 = f15.1

Galaxy Camera 2 equivalent aperture

Crop factor = 5.62
Aperture = f2.8 - f5.9

35-mm equivalent aperture = (f2.8 - f5.9) × 5.62 = f15.7 - f33.2

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.