Konica-Minolta DiMAGE E50 vs. Sigma SD9

Comparison

change cameras »
DiMAGE E50 image
vs
SD9 image
Konica-Minolta DiMAGE E50 Sigma SD9
check price » check price »
Megapixels
5.00
3.40
Max. image resolution
2560 x 1920
2268 x 1512
Note: Sigma SD9 uses Foveon X3 image sensor, which is a new type of sensor that has 3 layers of photoelements stacked together in 1 pixel location. Traditional CCD/CMOS sensors have 1 pixel for 1 color, whereas Foveon sensor captures all 3 colors (blue, green, and red) at every pixel.

Sensor

Sensor type
CCD
Foveon
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
20.7 x 13.8 mm
Sensor resolution
2579 x 1939
2259 x 1506
Diagonal
7.19 mm
24.88 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 11.5
(ratio)
Konica-Minolta DiMAGE E50 Sigma SD9
Surface area:
24.84 mm² vs 285.66 mm²
Difference: 260.82 mm² (1050%)
SD9 sensor is approx. 11.5x bigger than DiMAGE E50 sensor.
Note: You are comparing cameras of different generations. There is a 3 year gap between Konica-Minolta DiMAGE E50 (2005) and Sigma SD9 (2002). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
2.23 µm
9.16 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 6.93 µm (311%)
Pixel pitch of SD9 is approx. 311% higher than pixel pitch of DiMAGE E50.
Pixel area
4.97 µm²
83.91 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 78.94 µm² (1588%)
A pixel on Sigma SD9 sensor is approx. 1588% bigger than a pixel on Konica-Minolta DiMAGE E50.
Pixel density
20.12 MP/cm²
1.19 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 18.93 µm (1591%)
Konica-Minolta DiMAGE E50 has approx. 1591% higher pixel density than Sigma SD9.
To learn about the accuracy of these numbers, click here.



Specs

Konica-Minolta DiMAGE E50
Sigma SD9
Crop factor
6.02
1.74
Total megapixels
3.40
Effective megapixels
3.40
Optical zoom
Yes
Digital zoom
Yes
No
ISO sensitivity
Auto
100, 200, 400
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
6 cm
Focal length (35mm equiv.)
32 - 96 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f4.8
Max. aperture (35mm equiv.)
f16.9 - f28.9
n/a
Metering
Centre weighted
Centre weighted, Matrix, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/2 sec
Bulb+30 sec
Max. shutter speed
1/1000 sec
1/6000 sec
Built-in flash
External flash
Viewfinder
Optical
Optical (pentaprism)
White balance presets
5
7
Screen size
2.5"
1.8"
Screen resolution
130,000 dots
Video capture
Max. video resolution
Storage types
Secure Digital
CompactFlash type I, CompactFlash type II, Microdrive
USB
USB 1.1
USB 1.0
HDMI
Wireless
GPS
Battery
Li-Ion
Lithium-Ion rechargeable battery
Weight
130 g
803 g
Dimensions
89 x 55 x 28 mm
152 x 120 x 79 mm
Year
2005
2002




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Konica-Minolta DiMAGE E50 diagonal

The diagonal of DiMAGE E50 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Sigma SD9 diagonal

w = 20.70 mm
h = 13.80 mm
Diagonal =  20.70² + 13.80²   = 24.88 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

DiMAGE E50 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

SD9 sensor area

Width = 20.70 mm
Height = 13.80 mm

Surface area = 20.70 × 13.80 = 285.66 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

DiMAGE E50 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 2579 pixels
Pixel pitch =   5.75  × 1000  = 2.23 µm
2579

SD9 pixel pitch

Sensor width = 20.70 mm
Sensor resolution width = 2259 pixels
Pixel pitch =   20.70  × 1000  = 9.16 µm
2259


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

DiMAGE E50 pixel area

Pixel pitch = 2.23 µm

Pixel area = 2.23² = 4.97 µm²

SD9 pixel area

Pixel pitch = 9.16 µm

Pixel area = 9.16² = 83.91 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

DiMAGE E50 pixel density

Sensor resolution width = 2579 pixels
Sensor width = 0.575 cm

Pixel density = (2579 / 0.575)² / 1000000 = 20.12 MP/cm²

SD9 pixel density

Sensor resolution width = 2259 pixels
Sensor width = 2.07 cm

Pixel density = (2259 / 2.07)² / 1000000 = 1.19 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

DiMAGE E50 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 5.00
r = 5.75/4.32 = 1.33
X =  5.00 × 1000000  = 1939
1.33
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939

Sensor resolution = 2579 x 1939

SD9 sensor resolution

Sensor width = 20.70 mm
Sensor height = 13.80 mm
Effective megapixels = 3.40
r = 20.70/13.80 = 1.5
X =  3.40 × 1000000  = 1506
1.5
Resolution horizontal: X × r = 1506 × 1.5 = 2259
Resolution vertical: X = 1506

Sensor resolution = 2259 x 1506


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


DiMAGE E50 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

SD9 crop factor

Sensor diagonal in mm = 24.88 mm
Crop factor =   43.27  = 1.74
24.88

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

DiMAGE E50 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f4.8

35-mm equivalent aperture = (f2.8 - f4.8) × 6.02 = f16.9 - f28.9

SD9 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Sigma SD9, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Sigma SD9 is 1.74

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.