Konica Revio KD-510Z vs. Fujifilm FinePix HS50 EXR

Comparison

change cameras »
Revio KD-510Z image
vs
FinePix HS50 EXR image
Konica Revio KD-510Z Fujifilm FinePix HS50 EXR
check price » check price »
Megapixels
5.36
16.00
Max. image resolution
2592 x 1944
4608 x 3456

Sensor

Sensor type
CCD
CMOS
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
1/2" (~ 6.4 x 4.8 mm)
Sensor resolution
2671 x 2008
4612 x 3468
Diagonal
8.89 mm
8.00 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.23 : 1
(ratio)
Konica Revio KD-510Z Fujifilm FinePix HS50 EXR
Surface area:
37.90 mm² vs 30.72 mm²
Difference: 7.18 mm² (23%)
KD-510Z sensor is approx. 1.23x bigger than HS50 EXR sensor.
Note: You are comparing sensors of very different generations. There is a gap of 10 years between Konica KD-510Z (2003) and Fujifilm HS50 EXR (2013). Ten years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
2.66 µm
1.39 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.27 µm (91%)
Pixel pitch of KD-510Z is approx. 91% higher than pixel pitch of HS50 EXR.
Pixel area
7.08 µm²
1.93 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 5.15 µm² (267%)
A pixel on Konica KD-510Z sensor is approx. 267% bigger than a pixel on Fujifilm HS50 EXR.
Pixel density
14.11 MP/cm²
51.93 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 37.82 µm (268%)
Fujifilm HS50 EXR has approx. 268% higher pixel density than Konica KD-510Z.
To learn about the accuracy of these numbers, click here.



Specs

Konica KD-510Z
Fujifilm HS50 EXR
Crop factor
4.87
5.41
Total megapixels
Effective megapixels
16.00
Optical zoom
3x
42x
Digital zoom
Yes
Yes
ISO sensitivity
50, 100, 200, 400
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800
RAW
Manual focus
Normal focus range
50 cm
45 cm
Macro focus range
6 cm
1 cm
Focal length (35mm equiv.)
39 - 117 mm
24 - 1000 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f4.9
f2.8 - f5.6
Max. aperture (35mm equiv.)
f13.6 - f23.9
f15.1 - f30.3
Metering
Centre weighted, Spot
Multi, Average, Spot
Exposure compensation
±1.5 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Electronic
White balance presets
6
7
Screen size
1.5"
3"
Screen resolution
118,000 dots
920,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
Storage types
Memory Stick, MultiMedia, Secure Digital
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable
Li-ion battery NP-W126
Weight
200 g
808 g
Dimensions
94 x 56 x 30 mm
134.9 x 101.3 x 145.9 mm
Year
2003
2013




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Konica KD-510Z diagonal

The diagonal of KD-510Z sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm

Fujifilm HS50 EXR diagonal

The diagonal of HS50 EXR sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

KD-510Z sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²

HS50 EXR sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

KD-510Z pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2671 pixels
Pixel pitch =   7.11  × 1000  = 2.66 µm
2671

HS50 EXR pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.40  × 1000  = 1.39 µm
4612


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

KD-510Z pixel area

Pixel pitch = 2.66 µm

Pixel area = 2.66² = 7.08 µm²

HS50 EXR pixel area

Pixel pitch = 1.39 µm

Pixel area = 1.39² = 1.93 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

KD-510Z pixel density

Sensor resolution width = 2671 pixels
Sensor width = 0.711 cm

Pixel density = (2671 / 0.711)² / 1000000 = 14.11 MP/cm²

HS50 EXR pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.64 cm

Pixel density = (4612 / 0.64)² / 1000000 = 51.93 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

KD-510Z sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 5.36
r = 7.11/5.33 = 1.33
X =  5.36 × 1000000  = 2008
1.33
Resolution horizontal: X × r = 2008 × 1.33 = 2671
Resolution vertical: X = 2008

Sensor resolution = 2671 x 2008

HS50 EXR sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 16.00
r = 6.40/4.80 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


KD-510Z crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

HS50 EXR crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

KD-510Z equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 4.87 = f13.6 - f23.9

HS50 EXR equivalent aperture

Crop factor = 5.41
Aperture = f2.8 - f5.6

35-mm equivalent aperture = (f2.8 - f5.6) × 5.41 = f15.1 - f30.3

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.