Konica Revio KD-510Z vs. Fujifilm FinePix HS50 EXR
Comparison
change cameras » | |||||
|
vs |
|
|||
Konica Revio KD-510Z | Fujifilm FinePix HS50 EXR | ||||
check price » | check price » |
Megapixels
5.36
16.00
Max. image resolution
2592 x 1944
4608 x 3456
Sensor
Sensor type
CCD
CMOS
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
1/2" (~ 6.4 x 4.8 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.23 | : | 1 |
(ratio) | ||
Konica Revio KD-510Z | Fujifilm FinePix HS50 EXR |
Surface area:
37.90 mm² | vs | 30.72 mm² |
Difference: 7.18 mm² (23%)
KD-510Z sensor is approx. 1.23x bigger than HS50 EXR sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 10 years between Konica KD-510Z (2003) and Fujifilm HS50 EXR (2013).
Ten years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 5.15 µm² (267%)
A pixel on Konica KD-510Z sensor is approx. 267% bigger than a pixel on Fujifilm HS50 EXR.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Konica KD-510Z
Fujifilm HS50 EXR
Total megapixels
Effective megapixels
16.00
Optical zoom
3x
42x
Digital zoom
Yes
Yes
ISO sensitivity
50, 100, 200, 400
Auto, 100, 200, 400, 800, 1600, 3200, 6400, 12800
RAW
Manual focus
Normal focus range
50 cm
45 cm
Macro focus range
6 cm
1 cm
Focal length (35mm equiv.)
39 - 117 mm
24 - 1000 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f4.9
f2.8 - f5.6
Metering
Centre weighted, Spot
Multi, Average, Spot
Exposure compensation
±1.5 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Electronic
White balance presets
6
7
Screen size
1.5"
3"
Screen resolution
118,000 dots
920,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
Storage types
Memory Stick, MultiMedia, Secure Digital
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable
Li-ion battery NP-W126
Weight
200 g
808 g
Dimensions
94 x 56 x 30 mm
134.9 x 101.3 x 145.9 mm
Year
2003
2013
Choose cameras to compare
Popular comparisons:
- Konica Revio KD-510Z vs. Ricoh GR
- Konica Revio KD-510Z vs. Konica Revio KD-410Z
- Konica Revio KD-510Z vs. AgfaPhoto Compact 103
- Konica Revio KD-510Z vs. Konica Revio KD-400Z
- Konica Revio KD-510Z vs. Panasonic Lumix DMC-FX100
- Konica Revio KD-510Z vs. Fujifilm FinePix S2 Pro
- Konica Revio KD-510Z vs. Konica-Minolta DiMAGE X50
- Konica Revio KD-510Z vs. Fujifilm FinePix HS50 EXR
- Konica Revio KD-510Z vs. Konica-Minolta DiMAGE G600
- Konica Revio KD-510Z vs. Canon PowerShot S95
- Konica Revio KD-510Z vs. Minolta DiMAGE G500
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Konica KD-510Z diagonal
The diagonal of KD-510Z sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of
that value - 8.89 mm. If you want to know why, see
sensor sizes.
w = 7.11 mm
h = 5.33 mm
w = 7.11 mm
h = 5.33 mm
Diagonal = √ | 7.11² + 5.33² | = 8.89 mm |
Fujifilm HS50 EXR diagonal
The diagonal of HS50 EXR sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of
that value - 8 mm. If you want to know why, see
sensor sizes.
w = 6.40 mm
h = 4.80 mm
w = 6.40 mm
h = 4.80 mm
Diagonal = √ | 6.40² + 4.80² | = 8.00 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
KD-510Z sensor area
Width = 7.11 mm
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
HS50 EXR sensor area
Width = 6.40 mm
Height = 4.80 mm
Surface area = 6.40 × 4.80 = 30.72 mm²
Height = 4.80 mm
Surface area = 6.40 × 4.80 = 30.72 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
KD-510Z pixel pitch
Sensor width = 7.11 mm
Sensor resolution width = 2671 pixels
Sensor resolution width = 2671 pixels
Pixel pitch = | 7.11 | × 1000 | = 2.66 µm |
2671 |
HS50 EXR pixel pitch
Sensor width = 6.40 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.40 | × 1000 | = 1.39 µm |
4612 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
KD-510Z pixel area
Pixel pitch = 2.66 µm
Pixel area = 2.66² = 7.08 µm²
Pixel area = 2.66² = 7.08 µm²
HS50 EXR pixel area
Pixel pitch = 1.39 µm
Pixel area = 1.39² = 1.93 µm²
Pixel area = 1.39² = 1.93 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
KD-510Z pixel density
Sensor resolution width = 2671 pixels
Sensor width = 0.711 cm
Pixel density = (2671 / 0.711)² / 1000000 = 14.11 MP/cm²
Sensor width = 0.711 cm
Pixel density = (2671 / 0.711)² / 1000000 = 14.11 MP/cm²
HS50 EXR pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.64 cm
Pixel density = (4612 / 0.64)² / 1000000 = 51.93 MP/cm²
Sensor width = 0.64 cm
Pixel density = (4612 / 0.64)² / 1000000 = 51.93 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
KD-510Z sensor resolution
Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 5.36
Resolution horizontal: X × r = 2008 × 1.33 = 2671
Resolution vertical: X = 2008
Sensor resolution = 2671 x 2008
Sensor height = 5.33 mm
Effective megapixels = 5.36
r = 7.11/5.33 = 1.33 |
|
Resolution vertical: X = 2008
Sensor resolution = 2671 x 2008
HS50 EXR sensor resolution
Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.80 mm
Effective megapixels = 16.00
r = 6.40/4.80 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
KD-510Z crop factor
Sensor diagonal in mm = 8.89 mm
Crop factor = | 43.27 | = 4.87 |
8.89 |
HS50 EXR crop factor
Sensor diagonal in mm = 8.00 mm
Crop factor = | 43.27 | = 5.41 |
8.00 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
KD-510Z equivalent aperture
Crop factor = 4.87
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 4.87 = f13.6 - f23.9
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 4.87 = f13.6 - f23.9
HS50 EXR equivalent aperture
Crop factor = 5.41
Aperture = f2.8 - f5.6
35-mm equivalent aperture = (f2.8 - f5.6) × 5.41 = f15.1 - f30.3
Aperture = f2.8 - f5.6
35-mm equivalent aperture = (f2.8 - f5.6) × 5.41 = f15.1 - f30.3
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.