Minolta DiMAGE 7Hi vs. Panasonic Lumix DMC-FZ1000
Comparison
change cameras » | |||||
|
vs |
|
|||
Minolta DiMAGE 7Hi | Panasonic Lumix DMC-FZ1000 | ||||
check price » | check price » |
Megapixels
5.24
20.10
Max. image resolution
2560 x 1920
5472 x 3648
Sensor
Sensor type
CCD
CMOS
Sensor size
2/3" (~ 8.8 x 6.6 mm)
13.2 x 8.8 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 2 |
(ratio) | ||
Minolta DiMAGE 7Hi | Panasonic Lumix DMC-FZ1000 |
Surface area:
58.08 mm² | vs | 116.16 mm² |
Difference: 58.08 mm² (100%)
FZ1000 sensor is approx. 2x bigger than DiMAGE 7Hi sensor.
Note: You are comparing sensors of vastly different generations.
There is a gap of 12 years between Minolta DiMAGE 7Hi (2002) and
Panasonic FZ1000 (2014).
Twelve years is a huge amount of time,
technology wise, resulting in newer sensor being much more
efficient than the older one.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 5.33 µm² (93%)
A pixel on Minolta DiMAGE 7Hi sensor is approx. 93% bigger than a pixel on Panasonic FZ1000.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Minolta DiMAGE 7Hi
Panasonic FZ1000
Total megapixels
20.90
Effective megapixels
20.10
Optical zoom
7.1x
16x
Digital zoom
Yes
Yes
ISO sensitivity
100, 200, 400, 800
Auto, 125-12800 (expands to 80-25600)
RAW
Manual focus
Normal focus range
60 cm
30 cm
Macro focus range
20 cm
3 cm
Focal length (35mm equiv.)
28 - 200 mm
25 - 400 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f3.5
f2.8 - f4.0
Metering
Centre weighted, Matrix, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
Bulb+30 sec
60 sec
Max. shutter speed
1/4000 sec
1/16000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
7
5
Screen size
1.8"
3"
Screen resolution
122,000 dots
921,000 dots
Video capture
Max. video resolution
3840x2160 (30p)
Storage types
CompactFlash type I, CompactFlash type II, Microdrive
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion (NP-200)
Li-ion battery pack
Weight
650 g
831 g
Dimensions
117 x 91 x 113 mm
136.8 x 98.5 x 130.7 mm
Year
2002
2014
Choose cameras to compare
Popular comparisons:
- Minolta DiMAGE 7Hi vs. Konica-Minolta DiMAGE A2
- Minolta DiMAGE 7Hi vs. Canon PowerShot S2 IS
- Minolta DiMAGE 7Hi vs. Olympus E-20
- Minolta DiMAGE 7Hi vs. Olympus E-10
- Minolta DiMAGE 7Hi vs. Canon PowerShot G5
- Minolta DiMAGE 7Hi vs. Konica-Minolta DiMAGE A200
- Minolta DiMAGE 7Hi vs. Konica-Minolta Dynax 7D
- Minolta DiMAGE 7Hi vs. Canon EOS 300D
- Minolta DiMAGE 7Hi vs. Minolta DiMAGE 7
- Minolta DiMAGE 7Hi vs. Nikon Coolpix 5700
- Minolta DiMAGE 7Hi vs. Panasonic Lumix DMC-FZ1000
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Minolta DiMAGE 7Hi diagonal
The diagonal of DiMAGE 7Hi sensor is not 2/3 or 0.67" (16.9 mm) as you might expect, but approximately two thirds of
that value - 11 mm. If you want to know why, see
sensor sizes.
w = 8.80 mm
h = 6.60 mm
w = 8.80 mm
h = 6.60 mm
Diagonal = √ | 8.80² + 6.60² | = 11.00 mm |
Panasonic FZ1000 diagonal
w = 13.20 mm
h = 8.80 mm
h = 8.80 mm
Diagonal = √ | 13.20² + 8.80² | = 15.86 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
DiMAGE 7Hi sensor area
Width = 8.80 mm
Height = 6.60 mm
Surface area = 8.80 × 6.60 = 58.08 mm²
Height = 6.60 mm
Surface area = 8.80 × 6.60 = 58.08 mm²
FZ1000 sensor area
Width = 13.20 mm
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
DiMAGE 7Hi pixel pitch
Sensor width = 8.80 mm
Sensor resolution width = 2640 pixels
Sensor resolution width = 2640 pixels
Pixel pitch = | 8.80 | × 1000 | = 3.33 µm |
2640 |
FZ1000 pixel pitch
Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Sensor resolution width = 5492 pixels
Pixel pitch = | 13.20 | × 1000 | = 2.4 µm |
5492 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
DiMAGE 7Hi pixel area
Pixel pitch = 3.33 µm
Pixel area = 3.33² = 11.09 µm²
Pixel area = 3.33² = 11.09 µm²
FZ1000 pixel area
Pixel pitch = 2.4 µm
Pixel area = 2.4² = 5.76 µm²
Pixel area = 2.4² = 5.76 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
DiMAGE 7Hi pixel density
Sensor resolution width = 2640 pixels
Sensor width = 0.88 cm
Pixel density = (2640 / 0.88)² / 1000000 = 9 MP/cm²
Sensor width = 0.88 cm
Pixel density = (2640 / 0.88)² / 1000000 = 9 MP/cm²
FZ1000 pixel density
Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm
Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²
Sensor width = 1.32 cm
Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
DiMAGE 7Hi sensor resolution
Sensor width = 8.80 mm
Sensor height = 6.60 mm
Effective megapixels = 5.24
Resolution horizontal: X × r = 1985 × 1.33 = 2640
Resolution vertical: X = 1985
Sensor resolution = 2640 x 1985
Sensor height = 6.60 mm
Effective megapixels = 5.24
r = 8.80/6.60 = 1.33 |
|
Resolution vertical: X = 1985
Sensor resolution = 2640 x 1985
FZ1000 sensor resolution
Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661
Sensor resolution = 5492 x 3661
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5 |
|
Resolution vertical: X = 3661
Sensor resolution = 5492 x 3661
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
DiMAGE 7Hi crop factor
Sensor diagonal in mm = 11.00 mm
Crop factor = | 43.27 | = 3.93 |
11.00 |
FZ1000 crop factor
Sensor diagonal in mm = 15.86 mm
Crop factor = | 43.27 | = 2.73 |
15.86 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
DiMAGE 7Hi equivalent aperture
Crop factor = 3.93
Aperture = f2.8 - f3.5
35-mm equivalent aperture = (f2.8 - f3.5) × 3.93 = f11 - f13.8
Aperture = f2.8 - f3.5
35-mm equivalent aperture = (f2.8 - f3.5) × 3.93 = f11 - f13.8
FZ1000 equivalent aperture
Crop factor = 2.73
Aperture = f2.8 - f4.0
35-mm equivalent aperture = (f2.8 - f4.0) × 2.73 = f7.6 - f10.9
Aperture = f2.8 - f4.0
35-mm equivalent aperture = (f2.8 - f4.0) × 2.73 = f7.6 - f10.9
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.