Nikon Coolpix 775 vs. Nikon Coolpix S3300
Comparison
change cameras » | |||||
|
vs |
|
|||
Nikon Coolpix 775 | Nikon Coolpix S3300 | ||||
check price » | check price » |
Megapixels
1.90
16.00
Max. image resolution
1600 x 1200
4608 x 3456
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.7" (~ 5.33 x 4 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.33 |
(ratio) | ||
Nikon Coolpix 775 | Nikon Coolpix S3300 |
Surface area:
21.32 mm² | vs | 28.46 mm² |
Difference: 7.14 mm² (33%)
S3300 sensor is approx. 1.33x bigger than 775 sensor.
Note: You are comparing sensors of vastly different generations.
There is a gap of 11 years between Nikon 775 (2001) and
Nikon S3300 (2012).
Eleven years is a huge amount of time,
technology wise, resulting in newer sensor being much more
efficient than the older one.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 9.42 µm² (523%)
A pixel on Nikon 775 sensor is approx. 523% bigger than a pixel on Nikon S3300.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Nikon 775
Nikon S3300
Total megapixels
2.10
16.40
Effective megapixels
1.90
16.00
Optical zoom
3x
6x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, (100)
Auto, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
30 cm
50 cm
Macro focus range
4 cm
1 cm
Focal length (35mm equiv.)
38 - 115 mm
26 - 156 mm
Aperture priority
No
No
Max. aperture
f2.8 - f4.9
f3.5 - f6.5
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot, Spot AF-area
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
1 sec
4 sec
Max. shutter speed
1/1000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
None
White balance presets
5
5
Screen size
1.5"
2.7"
Screen resolution
110,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
Compact Flash (Type I only)
SD/SDHC/SDXC
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Nikon EN-EL1 Lithium-Ion included
Nikon EN-EL19 Lithium-Ion battery
Weight
230 g
128 g
Dimensions
87 x 67 x 44 mm
95 x 58 x 19 mm
Year
2001
2012
Choose cameras to compare
Popular comparisons:
- Nikon Coolpix 775 vs. Nikon Coolpix L11
- Nikon Coolpix 775 vs. Rollei Powerflex 610 HD
- Nikon Coolpix 775 vs. Nikon Coolpix 3200
- Nikon Coolpix 775 vs. Nikon Coolpix S2700
- Nikon Coolpix 775 vs. Casio Exilim EX-Z2000
- Nikon Coolpix 775 vs. Nikon Coolpix S220
- Nikon Coolpix 775 vs. Canon PowerShot A610
- Nikon Coolpix 775 vs. Nikon Coolpix 7600
- Nikon Coolpix 775 vs. Nikon Coolpix S3300
- Nikon Coolpix 775 vs. Nikon Coolpix S3200
- Nikon Coolpix 775 vs. Canon PowerShot SD950 IS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Nikon 775 diagonal
The diagonal of 775 sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of
that value - 6.66 mm. If you want to know why, see
sensor sizes.
w = 5.33 mm
h = 4.00 mm
w = 5.33 mm
h = 4.00 mm
Diagonal = √ | 5.33² + 4.00² | = 6.66 mm |
Nikon S3300 diagonal
The diagonal of S3300 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
775 sensor area
Width = 5.33 mm
Height = 4.00 mm
Surface area = 5.33 × 4.00 = 21.32 mm²
Height = 4.00 mm
Surface area = 5.33 × 4.00 = 21.32 mm²
S3300 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
775 pixel pitch
Sensor width = 5.33 mm
Sensor resolution width = 1589 pixels
Sensor resolution width = 1589 pixels
Pixel pitch = | 5.33 | × 1000 | = 3.35 µm |
1589 |
S3300 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.34 µm |
4612 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
775 pixel area
Pixel pitch = 3.35 µm
Pixel area = 3.35² = 11.22 µm²
Pixel area = 3.35² = 11.22 µm²
S3300 pixel area
Pixel pitch = 1.34 µm
Pixel area = 1.34² = 1.8 µm²
Pixel area = 1.34² = 1.8 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
775 pixel density
Sensor resolution width = 1589 pixels
Sensor width = 0.533 cm
Pixel density = (1589 / 0.533)² / 1000000 = 8.89 MP/cm²
Sensor width = 0.533 cm
Pixel density = (1589 / 0.533)² / 1000000 = 8.89 MP/cm²
S3300 pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
775 sensor resolution
Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 1.90
Resolution horizontal: X × r = 1195 × 1.33 = 1589
Resolution vertical: X = 1195
Sensor resolution = 1589 x 1195
Sensor height = 4.00 mm
Effective megapixels = 1.90
r = 5.33/4.00 = 1.33 |
|
Resolution vertical: X = 1195
Sensor resolution = 1589 x 1195
S3300 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
775 crop factor
Sensor diagonal in mm = 6.66 mm
Crop factor = | 43.27 | = 6.5 |
6.66 |
S3300 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
775 equivalent aperture
Crop factor = 6.5
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 6.5 = f18.2 - f31.9
Aperture = f2.8 - f4.9
35-mm equivalent aperture = (f2.8 - f4.9) × 6.5 = f18.2 - f31.9
S3300 equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f6.5
35-mm equivalent aperture = (f3.5 - f6.5) × 5.62 = f19.7 - f36.5
Aperture = f3.5 - f6.5
35-mm equivalent aperture = (f3.5 - f6.5) × 5.62 = f19.7 - f36.5
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.