Nikon Coolpix 950 vs. Nikon Coolpix 900

Comparison

change cameras »
Coolpix 950 image
vs
Coolpix 900 image
Nikon Coolpix 950 Nikon Coolpix 900
check price » check price »
Megapixels
1.90
1.20
Max. image resolution
1600 x 1200
1280 x 960

Sensor

Sensor type
CCD
CCD
Sensor size
1/2" (~ 6.4 x 4.8 mm)
1/2.7" (~ 5.33 x 4 mm)
Sensor resolution
1589 x 1195
1264 x 950
Diagonal
8.00 mm
6.66 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.44 : 1
(ratio)
Nikon Coolpix 950 Nikon Coolpix 900
Surface area:
30.72 mm² vs 21.32 mm²
Difference: 9.4 mm² (44%)
950 sensor is approx. 1.44x bigger than 900 sensor.
Pixel pitch
4.03 µm
4.22 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.19 µm (5%)
Pixel pitch of 900 is approx. 5% higher than pixel pitch of 950.
Pixel area
16.24 µm²
17.81 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.57 µm² (10%)
A pixel on Nikon 900 sensor is approx. 10% bigger than a pixel on Nikon 950.
Pixel density
6.16 MP/cm²
5.62 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 0.54 µm (10%)
Nikon 950 has approx. 10% higher pixel density than Nikon 900.
To learn about the accuracy of these numbers, click here.



Specs

Nikon 950
Nikon 900
Crop factor
5.41
6.5
Total megapixels
2.10
1.30
Effective megapixels
1.90
1.20
Optical zoom
3x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400
64
RAW
Manual focus
Normal focus range
10 cm
50 cm
Macro focus range
2 cm
8 cm
Focal length (35mm equiv.)
38 - 115 mm
38 - 115 mm
Aperture priority
Yes
No
Max. aperture
f2.6 - f4
f2.4 - f6.6
Max. aperture (35mm equiv.)
f14.1 - f21.6
f15.6 - f42.9
Metering
Centre weighted, Matrix, Spot
Centre weighted, Matrix, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/2 EV steps)
Shutter priority
Yes
No
Min. shutter speed
8 sec
1/4 sec
Max. shutter speed
1/750 sec
1/750 sec
Built-in flash
External flash
Viewfinder
Optical (tunnel)
Optical (tunnel)
White balance presets
6
2
Screen size
2"
2"
Screen resolution
130,000 dots
130,000 dots
Video capture
Max. video resolution
Storage types
CompactFlash type I
CompactFlash type I
USB
USB 1.0
USB 1.0
HDMI
Wireless
GPS
Battery
AA (4) batteries (NiMH recommended)
AA (4) batteries (NiMH recommended)
Weight
350 g
360 g
Dimensions
143 x 77 x 37 mm
157 x 75 x 35 mm
Year
1999
1998




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nikon 950 diagonal

The diagonal of 950 sensor is not 1/2 or 0.5" (12.7 mm) as you might expect, but approximately two thirds of that value - 8 mm. If you want to know why, see sensor sizes.

w = 6.40 mm
h = 4.80 mm
Diagonal =  6.40² + 4.80²   = 8.00 mm

Nikon 900 diagonal

The diagonal of 900 sensor is not 1/2.7 or 0.37" (9.4 mm) as you might expect, but approximately two thirds of that value - 6.66 mm. If you want to know why, see sensor sizes.

w = 5.33 mm
h = 4.00 mm
Diagonal =  5.33² + 4.00²   = 6.66 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

950 sensor area

Width = 6.40 mm
Height = 4.80 mm

Surface area = 6.40 × 4.80 = 30.72 mm²

900 sensor area

Width = 5.33 mm
Height = 4.00 mm

Surface area = 5.33 × 4.00 = 21.32 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

950 pixel pitch

Sensor width = 6.40 mm
Sensor resolution width = 1589 pixels
Pixel pitch =   6.40  × 1000  = 4.03 µm
1589

900 pixel pitch

Sensor width = 5.33 mm
Sensor resolution width = 1264 pixels
Pixel pitch =   5.33  × 1000  = 4.22 µm
1264


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

950 pixel area

Pixel pitch = 4.03 µm

Pixel area = 4.03² = 16.24 µm²

900 pixel area

Pixel pitch = 4.22 µm

Pixel area = 4.22² = 17.81 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

950 pixel density

Sensor resolution width = 1589 pixels
Sensor width = 0.64 cm

Pixel density = (1589 / 0.64)² / 1000000 = 6.16 MP/cm²

900 pixel density

Sensor resolution width = 1264 pixels
Sensor width = 0.533 cm

Pixel density = (1264 / 0.533)² / 1000000 = 5.62 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

950 sensor resolution

Sensor width = 6.40 mm
Sensor height = 4.80 mm
Effective megapixels = 1.90
r = 6.40/4.80 = 1.33
X =  1.90 × 1000000  = 1195
1.33
Resolution horizontal: X × r = 1195 × 1.33 = 1589
Resolution vertical: X = 1195

Sensor resolution = 1589 x 1195

900 sensor resolution

Sensor width = 5.33 mm
Sensor height = 4.00 mm
Effective megapixels = 1.20
r = 5.33/4.00 = 1.33
X =  1.20 × 1000000  = 950
1.33
Resolution horizontal: X × r = 950 × 1.33 = 1264
Resolution vertical: X = 950

Sensor resolution = 1264 x 950


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


950 crop factor

Sensor diagonal in mm = 8.00 mm
Crop factor =   43.27  = 5.41
8.00

900 crop factor

Sensor diagonal in mm = 6.66 mm
Crop factor =   43.27  = 6.5
6.66

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

950 equivalent aperture

Crop factor = 5.41
Aperture = f2.6 - f4

35-mm equivalent aperture = (f2.6 - f4) × 5.41 = f14.1 - f21.6

900 equivalent aperture

Crop factor = 6.5
Aperture = f2.4 - f6.6

35-mm equivalent aperture = (f2.4 - f6.6) × 6.5 = f15.6 - f42.9

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.