Nikon Coolpix L28 vs. Samsung ST88
Comparison
change cameras » | |||||
|
vs |
|
|||
Nikon Coolpix L28 | Samsung ST88 | ||||
check price » | check price » |
Megapixels
20.10
16.10
Max. image resolution
5152 x 3864
Sensor
Sensor type
CCD
n/a
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1 |
(ratio) | ||
Nikon Coolpix L28 | Samsung ST88 |
Surface area:
28.46 mm² | vs | 28.46 mm² |
Difference: 0 mm² (0%)
L28 and ST88 sensors are the same size.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.35 µm² (25%)
A pixel on Samsung ST88 sensor is approx. 25% bigger than a pixel on Nikon L28.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Nikon L28
Samsung ST88
Total megapixels
20.48
Effective megapixels
20.10
Optical zoom
5x
Digital zoom
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
10 cm
Focal length (35mm equiv.)
26 - 130 mm
Aperture priority
No
Max. aperture
f3.2 - f6.5
Metering
Matrix, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
Shutter priority
No
Min. shutter speed
4 sec
Max. shutter speed
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Optical
White balance presets
6
Screen size
3"
Screen resolution
230,000 dots
Video capture
Max. video resolution
Storage types
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2 x AA alkaline or lithium batteries
Weight
164 g
Dimensions
95.4 x 59.8 x 29 mm
Year
2013
2012
Choose cameras to compare
Popular comparisons:
- Nikon Coolpix L28 vs. Sony Cyber-shot DSC-W710
- Nikon Coolpix L28 vs. Canon PowerShot A2500
- Nikon Coolpix L28 vs. Canon PowerShot A1400
- Nikon Coolpix L28 vs. Canon PowerShot A2300
- Nikon Coolpix L28 vs. Nikon Coolpix L26
- Nikon Coolpix L28 vs. Sony Cyber-shot DSC-W730
- Nikon Coolpix L28 vs. Nikon Coolpix S2700
- Nikon Coolpix L28 vs. Nikon Coolpix S3300
- Nikon Coolpix L28 vs. Nikon Coolpix L27
- Nikon Coolpix L28 vs. Canon PowerShot A810
- Nikon Coolpix L28 vs. Canon PowerShot SX160 IS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Nikon L28 diagonal
The diagonal of L28 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Samsung ST88 diagonal
The diagonal of ST88 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
L28 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
ST88 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
L28 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 5171 pixels
Sensor resolution width = 5171 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.19 µm |
5171 |
ST88 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4627 pixels
Sensor resolution width = 4627 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.33 µm |
4627 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
L28 pixel area
Pixel pitch = 1.19 µm
Pixel area = 1.19² = 1.42 µm²
Pixel area = 1.19² = 1.42 µm²
ST88 pixel area
Pixel pitch = 1.33 µm
Pixel area = 1.33² = 1.77 µm²
Pixel area = 1.33² = 1.77 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
L28 pixel density
Sensor resolution width = 5171 pixels
Sensor width = 0.616 cm
Pixel density = (5171 / 0.616)² / 1000000 = 70.47 MP/cm²
Sensor width = 0.616 cm
Pixel density = (5171 / 0.616)² / 1000000 = 70.47 MP/cm²
ST88 pixel density
Sensor resolution width = 4627 pixels
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4627 / 0.616)² / 1000000 = 56.42 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
L28 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 20.10
Resolution horizontal: X × r = 3888 × 1.33 = 5171
Resolution vertical: X = 3888
Sensor resolution = 5171 x 3888
Sensor height = 4.62 mm
Effective megapixels = 20.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3888
Sensor resolution = 5171 x 3888
ST88 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.10
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Sensor height = 4.62 mm
Effective megapixels = 16.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
L28 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
ST88 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
L28 equivalent aperture
Crop factor = 5.62
Aperture = f3.2 - f6.5
35-mm equivalent aperture = (f3.2 - f6.5) × 5.62 = f18 - f36.5
Aperture = f3.2 - f6.5
35-mm equivalent aperture = (f3.2 - f6.5) × 5.62 = f18 - f36.5
ST88 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Samsung ST88, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Samsung ST88 is 5.62
Crop factor for Samsung ST88 is 5.62
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.