Nikon D1X vs. Nikon D3200

Comparison

change cameras »
D1X image
vs
D3200 image
Nikon D1X Nikon D3200
check price » check price »
Megapixels
5.30
24.20
Max. image resolution
3008 x 1960
6016 x 4000

Sensor

Sensor type
CCD
CMOS
Sensor size
23.7 x 15.5 mm
23.2 x 15.4 mm
Sensor resolution
2847 x 1861
6045 x 4003
Diagonal
28.32 mm
27.85 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.03 : 1
(ratio)
Nikon D1X Nikon D3200
Surface area:
367.35 mm² vs 357.28 mm²
Difference: 10.07 mm² (3%)
D1X sensor is slightly bigger than D3200 sensor (only 3% difference).
Note: You are comparing sensors of vastly different generations. There is a gap of 11 years between Nikon D1X (2001) and Nikon D3200 (2012). Eleven years is a huge amount of time, technology wise, resulting in newer sensor being much more efficient than the older one.
Pixel pitch
8.32 µm
3.84 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 4.48 µm (117%)
Pixel pitch of D1X is approx. 117% higher than pixel pitch of D3200.
Pixel area
69.22 µm²
14.75 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 54.47 µm² (369%)
A pixel on Nikon D1X sensor is approx. 369% bigger than a pixel on Nikon D3200.
Pixel density
1.44 MP/cm²
6.79 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 5.35 µm (372%)
Nikon D3200 has approx. 372% higher pixel density than Nikon D1X.
To learn about the accuracy of these numbers, click here.



Specs

Nikon D1X
Nikon D3200
Crop factor
1.53
1.55
Total megapixels
5.89
24.70
Effective megapixels
5.30
24.20
Optical zoom
Digital zoom
No
No
ISO sensitivity
125-800 in 1, 1/2 or 1/3 EV steps
Auto, 100, 200, 400, 800, 1600, 3200, 6400 (12800 with boost)
RAW
Manual focus
Normal focus range
Macro focus range
Focal length (35mm equiv.)
Aperture priority
Yes
Yes
Max. aperture
Max. aperture (35mm equiv.)
n/a
n/a
Metering
3D Matrix, Centre weighted, Spot
Multi, Center-weighted, Spot AF-area
Exposure compensation
±5 EV (in 1/3 EV, 1/2 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
Bulb+30 sec
30 sec
Max. shutter speed
1/16000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Optical (pentaprism)
Optical (pentamirror)
White balance presets
7
12
Screen size
2"
3"
Screen resolution
130,000 dots
921,000 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
Storage types
CompactFlash type I, CompactFlash type II, Microdrive
SD/SDHC/SDXC UHS-I compliant
USB
USB 1.0
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Nikon EN-EL1 Lithium-Ion included
Lithium-Ion EN-EL14 rechargeable battery
Weight
1200 g
505 g
Dimensions
157 x 153 x 85 mm
125 x 96 x 77 mm
Year
2001
2012




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nikon D1X diagonal

w = 23.70 mm
h = 15.50 mm
Diagonal =  23.70² + 15.50²   = 28.32 mm

Nikon D3200 diagonal

w = 23.20 mm
h = 15.40 mm
Diagonal =  23.20² + 15.40²   = 27.85 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

D1X sensor area

Width = 23.70 mm
Height = 15.50 mm

Surface area = 23.70 × 15.50 = 367.35 mm²

D3200 sensor area

Width = 23.20 mm
Height = 15.40 mm

Surface area = 23.20 × 15.40 = 357.28 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

D1X pixel pitch

Sensor width = 23.70 mm
Sensor resolution width = 2847 pixels
Pixel pitch =   23.70  × 1000  = 8.32 µm
2847

D3200 pixel pitch

Sensor width = 23.20 mm
Sensor resolution width = 6045 pixels
Pixel pitch =   23.20  × 1000  = 3.84 µm
6045


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

D1X pixel area

Pixel pitch = 8.32 µm

Pixel area = 8.32² = 69.22 µm²

D3200 pixel area

Pixel pitch = 3.84 µm

Pixel area = 3.84² = 14.75 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

D1X pixel density

Sensor resolution width = 2847 pixels
Sensor width = 2.37 cm

Pixel density = (2847 / 2.37)² / 1000000 = 1.44 MP/cm²

D3200 pixel density

Sensor resolution width = 6045 pixels
Sensor width = 2.32 cm

Pixel density = (6045 / 2.32)² / 1000000 = 6.79 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

D1X sensor resolution

Sensor width = 23.70 mm
Sensor height = 15.50 mm
Effective megapixels = 5.30
r = 23.70/15.50 = 1.53
X =  5.30 × 1000000  = 1861
1.53
Resolution horizontal: X × r = 1861 × 1.53 = 2847
Resolution vertical: X = 1861

Sensor resolution = 2847 x 1861

D3200 sensor resolution

Sensor width = 23.20 mm
Sensor height = 15.40 mm
Effective megapixels = 24.20
r = 23.20/15.40 = 1.51
X =  24.20 × 1000000  = 4003
1.51
Resolution horizontal: X × r = 4003 × 1.51 = 6045
Resolution vertical: X = 4003

Sensor resolution = 6045 x 4003


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


D1X crop factor

Sensor diagonal in mm = 28.32 mm
Crop factor =   43.27  = 1.53
28.32

D3200 crop factor

Sensor diagonal in mm = 27.85 mm
Crop factor =   43.27  = 1.55
27.85

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

D1X equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Nikon D1X, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Nikon D1X is 1.53

D3200 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Nikon D3200, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Nikon D3200 is 1.55

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.