Nokia Lumia 1020 vs. Pentax 645D

Comparison

change cameras »
Lumia 1020 image
vs
645D image
Nokia Lumia 1020 Pentax 645D
check price » check price »
Megapixels
41.33
40.00
Max. image resolution
7136 x 5360
7264 x 5440

Sensor

Sensor type
CMOS
CCD
Sensor size
8.64 x 6 mm
44 x 33 mm
Sensor resolution
7714 x 5357
7294 x 5484
Diagonal
10.52 mm
55.00 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 28.01
(ratio)
Nokia Lumia 1020 Pentax 645D
Surface area:
51.84 mm² vs 1452.00 mm²
Difference: 1400.16 mm² (2701%)
645D sensor is approx. 28.01x bigger than Lumia 1020 sensor.
Note: You are comparing cameras of different generations. There is a 3 year gap between Nokia Lumia 1020 (2013) and Pentax 645D (2010). All things being equal, newer sensor generations generally outperform the older.
Pixel pitch
1.12 µm
6.03 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 4.91 µm (438%)
Pixel pitch of 645D is approx. 438% higher than pixel pitch of Lumia 1020.
Pixel area
1.25 µm²
36.36 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 35.11 µm² (2809%)
A pixel on Pentax 645D sensor is approx. 2809% bigger than a pixel on Nokia Lumia 1020.
Pixel density
79.71 MP/cm²
2.75 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 76.96 µm (2799%)
Nokia Lumia 1020 has approx. 2799% higher pixel density than Pentax 645D.
To learn about the accuracy of these numbers, click here.

Specs

Nokia Lumia 1020
Pentax 645D
Crop factor
4.11
0.79
Total megapixels
41.33
40.10
Effective megapixels
40.00
Optical zoom
Digital zoom
Yes
No
ISO sensitivity
100, 200, 400, 800, 1600, 3200
Auto, 200 - 1600
RAW
Manual focus
Normal focus range
Macro focus range
15 cm
Focal length (35mm equiv.)
27 mm
Aperture priority
No
Yes
Max. aperture
f2.2
Max. aperture (35mm equiv.)
f9
n/a
Metering
Centre weighted, Multi-segment, Spot
Exposure compensation
±3 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV, 1 EV steps)
Shutter priority
No
Yes
Min. shutter speed
4 sec
30 sec
Max. shutter speed
1/16000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Optical (pentaprism)
White balance presets
4
8
Screen size
4,5"
3"
Screen resolution
1280 x 768 dots
921,000 dots
Video capture
Max. video resolution
1920x1080 (30p)
Storage types
32 GB on-board memory
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
BV-5XW
Lithium-Ion D-LI90 rechargeable battery
Weight
158 g
1400 g
Dimensions
130.4 x 71.4 x 10.4 mm
156 x 117 x 119 mm
Year
2013
2010



Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Nokia Lumia 1020 diagonal

w = 8.64 mm
h = 6.00 mm
Diagonal =  8.64² + 6.00²   = 10.52 mm

Pentax 645D diagonal

w = 44.00 mm
h = 33.00 mm
Diagonal =  44.00² + 33.00²   = 55.00 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

Lumia 1020 sensor area

Width = 8.64 mm
Height = 6.00 mm

Surface area = 8.64 × 6.00 = 51.84 mm²

645D sensor area

Width = 44.00 mm
Height = 33.00 mm

Surface area = 44.00 × 33.00 = 1452.00 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

Lumia 1020 pixel pitch

Sensor width = 8.64 mm
Sensor resolution width = 7714 pixels
Pixel pitch =   8.64  × 1000  = 1.12 µm
7714

645D pixel pitch

Sensor width = 44.00 mm
Sensor resolution width = 7294 pixels
Pixel pitch =   44.00  × 1000  = 6.03 µm
7294


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

Lumia 1020 pixel area

Pixel pitch = 1.12 µm

Pixel area = 1.12² = 1.25 µm²

645D pixel area

Pixel pitch = 6.03 µm

Pixel area = 6.03² = 36.36 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

Lumia 1020 pixel density

Sensor resolution width = 7714 pixels
Sensor width = 0.864 cm

Pixel density = (7714 / 0.864)² / 1000000 = 79.71 MP/cm²

645D pixel density

Sensor resolution width = 7294 pixels
Sensor width = 4.4 cm

Pixel density = (7294 / 4.4)² / 1000000 = 2.75 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

Lumia 1020 sensor resolution

Sensor width = 8.64 mm
Sensor height = 6.00 mm
Effective megapixels = 41.33
r = 8.64/6.00 = 1.44
X =  41.33 × 1000000  = 5357
1.44
Resolution horizontal: X × r = 5357 × 1.44 = 7714
Resolution vertical: X = 5357

Sensor resolution = 7714 x 5357

645D sensor resolution

Sensor width = 44.00 mm
Sensor height = 33.00 mm
Effective megapixels = 40.00
r = 44.00/33.00 = 1.33
X =  40.00 × 1000000  = 5484
1.33
Resolution horizontal: X × r = 5484 × 1.33 = 7294
Resolution vertical: X = 5484

Sensor resolution = 7294 x 5484


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


Lumia 1020 crop factor

Sensor diagonal in mm = 10.52 mm
Crop factor =   43.27  = 4.11
10.52

645D crop factor

Sensor diagonal in mm = 55.00 mm
Crop factor =   43.27  = 0.79
55.00

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

Lumia 1020 equivalent aperture

Crop factor = 4.11
Aperture = f2.2

35-mm equivalent aperture = (f2.2) × 4.11 = f9

645D equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Pentax 645D, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Pentax 645D is 0.79

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.