Olympus TG-850 iHS vs. Canon PowerShot S50

Comparison

change cameras »
TG-850 iHS image
vs
PowerShot S50 image
Olympus TG-850 iHS Canon PowerShot S50
check price » check price »
Megapixels
16.00
5.00
Max. image resolution
4608 x 3456
2592 x 1944

Sensor

Sensor type
CMOS
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
4612 x 3468
2579 x 1939
Diagonal
7.70 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.33
(ratio)
Olympus TG-850 iHS Canon PowerShot S50
Surface area:
28.46 mm² vs 37.90 mm²
Difference: 9.44 mm² (33%)
S50 sensor is approx. 1.33x bigger than TG-850 iHS sensor.
Note: You are comparing sensors of vastly different generations. There is a gap of 11 years between Olympus TG-850 iHS (2014) and Canon S50 (2003). Eleven years is a huge amount of time, technology wise, resulting in newer sensor being much more efficient than the older one.
Pixel pitch
1.34 µm
2.76 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.42 µm (106%)
Pixel pitch of S50 is approx. 106% higher than pixel pitch of TG-850 iHS.
Pixel area
1.8 µm²
7.62 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 5.82 µm² (323%)
A pixel on Canon S50 sensor is approx. 323% bigger than a pixel on Olympus TG-850 iHS.
Pixel density
56.06 MP/cm²
13.16 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 42.9 µm (326%)
Olympus TG-850 iHS has approx. 326% higher pixel density than Canon S50.
To learn about the accuracy of these numbers, click here.



Specs

Olympus TG-850 iHS
Canon S50
Crop factor
5.62
4.87
Total megapixels
5.20
Effective megapixels
16.00
5.00
Optical zoom
5x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 125, 200, 400, 800, 1600, 3200, 6400
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
10 cm
50 cm
Macro focus range
1 cm
10 cm
Focal length (35mm equiv.)
21 - 105 mm
35 - 105 mm
Aperture priority
No
Yes
Max. aperture
f3.5 - f5.7
f2.8 - f4.9
Max. aperture (35mm equiv.)
f19.7 - f32
f13.6 - f23.9
Metering
Multi, Spot
Centre weighted, Evaluative, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
4 sec
15 sec
Max. shutter speed
1/2000 sec
1/1500 sec
Built-in flash
External flash
Viewfinder
None
Optical (tunnel)
White balance presets
5
6
Screen size
3"
1.8"
Screen resolution
460,000 dots
118,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
Storage types
SD/SDHC/SDXC
CompactFlash type I, CompactFlash type II, Microdrive
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
LI-50B lithium-ion battery
Canon Lithium-Ion
Weight
218 g
260 g
Dimensions
109.9 x 64.1 x 27.6 mm
112 x 58 x 42 mm
Year
2014
2003




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Olympus TG-850 iHS diagonal

The diagonal of TG-850 iHS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of that value - 7.7 mm. If you want to know why, see sensor sizes.

w = 6.16 mm
h = 4.62 mm
Diagonal =  6.16² + 4.62²   = 7.70 mm

Canon S50 diagonal

The diagonal of S50 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

TG-850 iHS sensor area

Width = 6.16 mm
Height = 4.62 mm

Surface area = 6.16 × 4.62 = 28.46 mm²

S50 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

TG-850 iHS pixel pitch

Sensor width = 6.16 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   6.16  × 1000  = 1.34 µm
4612

S50 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2579 pixels
Pixel pitch =   7.11  × 1000  = 2.76 µm
2579


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

TG-850 iHS pixel area

Pixel pitch = 1.34 µm

Pixel area = 1.34² = 1.8 µm²

S50 pixel area

Pixel pitch = 2.76 µm

Pixel area = 2.76² = 7.62 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

TG-850 iHS pixel density

Sensor resolution width = 4612 pixels
Sensor width = 0.616 cm

Pixel density = (4612 / 0.616)² / 1000000 = 56.06 MP/cm²

S50 pixel density

Sensor resolution width = 2579 pixels
Sensor width = 0.711 cm

Pixel density = (2579 / 0.711)² / 1000000 = 13.16 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

TG-850 iHS sensor resolution

Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.00
r = 6.16/4.62 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468

S50 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 5.00
r = 7.11/5.33 = 1.33
X =  5.00 × 1000000  = 1939
1.33
Resolution horizontal: X × r = 1939 × 1.33 = 2579
Resolution vertical: X = 1939

Sensor resolution = 2579 x 1939


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


TG-850 iHS crop factor

Sensor diagonal in mm = 7.70 mm
Crop factor =   43.27  = 5.62
7.70

S50 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

TG-850 iHS equivalent aperture

Crop factor = 5.62
Aperture = f3.5 - f5.7

35-mm equivalent aperture = (f3.5 - f5.7) × 5.62 = f19.7 - f32

S50 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 4.87 = f13.6 - f23.9

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.