Olympus Tough TG-620 vs. Olympus TG-630 iHS
Comparison
change cameras » | |||||
|
vs |
|
|||
Olympus Tough TG-620 | Olympus TG-630 iHS | ||||
check price » | check price » |
Megapixels
12.70
12.00
Max. image resolution
3968 x 2976
3968 x 2976
Sensor
Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1 |
(ratio) | ||
Olympus Tough TG-620 | Olympus TG-630 iHS |
Surface area:
28.46 mm² | vs | 28.46 mm² |
Difference: 0 mm² (0%)
TG-620 and TG-630 iHS sensors are the same size.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.12 µm² (5%)
A pixel on Olympus TG-630 iHS sensor is approx. 5% bigger than a pixel on Olympus TG-620.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Olympus TG-620
Olympus TG-630 iHS
Total megapixels
Effective megapixels
12.00
Optical zoom
Yes
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600, 3200, 6400
Auto, High Auto, 100, 200, 400, 800, 1600, 3200, 6400
RAW
Manual focus
Normal focus range
20 cm
50 cm
Macro focus range
3 cm
3 cm
Focal length (35mm equiv.)
28 - 140 mm
28 - 140 mm
Aperture priority
No
No
Max. aperture
f3.9 - f5.9
f3.9 - f5.9
Metering
ESP Digital, Spot
Multi, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
7
5
Screen size
3"
3"
Screen resolution
460,000 dots
460,000 dots
Video capture
Max. video resolution
Storage types
SDHC, SDXC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
Lithium-ion rechargeable LI-50B battery
Weight
167 g
167 g
Dimensions
98.4 x 65.9 x 21.9 mm
98.4 x 65.9 x 21.9 mm
Year
2012
2013
Choose cameras to compare
Popular comparisons:
- Olympus Tough TG-620 vs. Fujifilm FinePix XP50
- Olympus Tough TG-620 vs. Olympus TG-320
- Olympus Tough TG-620 vs. Olympus TG-820 iHS
- Olympus Tough TG-620 vs. Sony Cyber-shot DSC-TF1
- Olympus Tough TG-620 vs. Panasonic Lumix DMC-TS25
- Olympus Tough TG-620 vs. Canon PowerShot D20
- Olympus Tough TG-620 vs. Olympus TG-830 iHS
- Olympus Tough TG-620 vs. Olympus Tough TG-2 iHS
- Olympus Tough TG-620 vs. Olympus TG-630 iHS
- Olympus Tough TG-620 vs. Panasonic Lumix DMC-TS2
- Olympus Tough TG-620 vs. Nikon Coolpix AW100
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Olympus TG-620 diagonal
The diagonal of TG-620 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Olympus TG-630 iHS diagonal
The diagonal of TG-630 iHS sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
TG-620 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
TG-630 iHS sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
TG-620 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4110 pixels
Sensor resolution width = 4110 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.5 µm |
4110 |
TG-630 iHS pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3995 pixels
Sensor resolution width = 3995 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.54 µm |
3995 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
TG-620 pixel area
Pixel pitch = 1.5 µm
Pixel area = 1.5² = 2.25 µm²
Pixel area = 1.5² = 2.25 µm²
TG-630 iHS pixel area
Pixel pitch = 1.54 µm
Pixel area = 1.54² = 2.37 µm²
Pixel area = 1.54² = 2.37 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
TG-620 pixel density
Sensor resolution width = 4110 pixels
Sensor width = 0.616 cm
Pixel density = (4110 / 0.616)² / 1000000 = 44.52 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4110 / 0.616)² / 1000000 = 44.52 MP/cm²
TG-630 iHS pixel density
Sensor resolution width = 3995 pixels
Sensor width = 0.616 cm
Pixel density = (3995 / 0.616)² / 1000000 = 42.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3995 / 0.616)² / 1000000 = 42.06 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
TG-620 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.70
Resolution horizontal: X × r = 3090 × 1.33 = 4110
Resolution vertical: X = 3090
Sensor resolution = 4110 x 3090
Sensor height = 4.62 mm
Effective megapixels = 12.70
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3090
Sensor resolution = 4110 x 3090
TG-630 iHS sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.00
Resolution horizontal: X × r = 3004 × 1.33 = 3995
Resolution vertical: X = 3004
Sensor resolution = 3995 x 3004
Sensor height = 4.62 mm
Effective megapixels = 12.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3004
Sensor resolution = 3995 x 3004
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
TG-620 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
TG-630 iHS crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
TG-620 equivalent aperture
Crop factor = 5.62
Aperture = f3.9 - f5.9
35-mm equivalent aperture = (f3.9 - f5.9) × 5.62 = f21.9 - f33.2
Aperture = f3.9 - f5.9
35-mm equivalent aperture = (f3.9 - f5.9) × 5.62 = f21.9 - f33.2
TG-630 iHS equivalent aperture
Crop factor = 5.62
Aperture = f3.9 - f5.9
35-mm equivalent aperture = (f3.9 - f5.9) × 5.62 = f21.9 - f33.2
Aperture = f3.9 - f5.9
35-mm equivalent aperture = (f3.9 - f5.9) × 5.62 = f21.9 - f33.2
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.