Olympus X-920 vs. Canon EOS 600D
Comparison
change cameras » | |||||
|
vs |
|
|||
Olympus X-920 | Canon EOS 600D | ||||
check price » | check price » |
Megapixels
12.00
18.00
Max. image resolution
4000 x 3000
5184 x 3456
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
22.3 x 14.9 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 11.67 |
(ratio) | ||
Olympus X-920 | Canon EOS 600D |
Surface area:
28.46 mm² | vs | 332.27 mm² |
Difference: 303.81 mm² (1067%)
600D sensor is approx. 11.67x bigger than X-920 sensor.
Note: You are comparing cameras of different generations.
There is a 2 year gap between Olympus X-920 (2009) and Canon 600D (2011).
All things being equal, newer sensor generations generally outperform the older.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 16.03 µm² (676%)
A pixel on Canon 600D sensor is approx. 676% bigger than a pixel on Olympus X-920.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Olympus X-920
Canon 600D
Total megapixels
18.70
Effective megapixels
18.00
Optical zoom
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600
Auto, 100, 200, 400, 800, 1600, 3200, 6400, (12800 with boost)
RAW
Manual focus
Normal focus range
60 cm
Macro focus range
4 cm
Focal length (35mm equiv.)
26 - 105 mm
Aperture priority
No
Yes
Max. aperture
f2.6 - f5.9
Metering
ESP Digital
Multi, Center-weighted, Spot, Partial
Exposure compensation
±2 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
No
Yes
Min. shutter speed
4 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Optical
White balance presets
7
6
Screen size
2.7"
3"
Screen resolution
230,000 dots
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (30p/25p/24p)
Storage types
xD Picture card
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-Ion
Li-Ion
Weight
106 g
570 g
Dimensions
95.0 x 57.0 x 22.4 mm
133.1 x 99.5 x 79.7 mm
Year
2009
2011
Choose cameras to compare
Popular comparisons:
- Olympus X-920 vs. Kodak EasyShare M580
- Olympus X-920 vs. Panasonic Lumix DMC-FS10
- Olympus X-920 vs. Canon EOS Rebel T2i
- Olympus X-920 vs. Olympus mju 800 black
- Olympus X-920 vs. Canon PowerShot S5 IS
- Olympus X-920 vs. Olympus Stylus 840
- Olympus X-920 vs. Fujifilm FinePix AX305
- Olympus X-920 vs. Nikon D5200
- Olympus X-920 vs. Sony Cyber-shot DSC-HX50
- Olympus X-920 vs. Canon PowerShot A580
- Olympus X-920 vs. Canon IXUS 130
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Olympus X-920 diagonal
The diagonal of X-920 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Canon 600D diagonal
w = 22.30 mm
h = 14.90 mm
h = 14.90 mm
Diagonal = √ | 22.30² + 14.90² | = 26.82 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
X-920 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
600D sensor area
Width = 22.30 mm
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Height = 14.90 mm
Surface area = 22.30 × 14.90 = 332.27 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
X-920 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 3995 pixels
Sensor resolution width = 3995 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.54 µm |
3995 |
600D pixel pitch
Sensor width = 22.30 mm
Sensor resolution width = 5196 pixels
Sensor resolution width = 5196 pixels
Pixel pitch = | 22.30 | × 1000 | = 4.29 µm |
5196 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
X-920 pixel area
Pixel pitch = 1.54 µm
Pixel area = 1.54² = 2.37 µm²
Pixel area = 1.54² = 2.37 µm²
600D pixel area
Pixel pitch = 4.29 µm
Pixel area = 4.29² = 18.4 µm²
Pixel area = 4.29² = 18.4 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
X-920 pixel density
Sensor resolution width = 3995 pixels
Sensor width = 0.616 cm
Pixel density = (3995 / 0.616)² / 1000000 = 42.06 MP/cm²
Sensor width = 0.616 cm
Pixel density = (3995 / 0.616)² / 1000000 = 42.06 MP/cm²
600D pixel density
Sensor resolution width = 5196 pixels
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
Sensor width = 2.23 cm
Pixel density = (5196 / 2.23)² / 1000000 = 5.43 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
X-920 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.00
Resolution horizontal: X × r = 3004 × 1.33 = 3995
Resolution vertical: X = 3004
Sensor resolution = 3995 x 3004
Sensor height = 4.62 mm
Effective megapixels = 12.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3004
Sensor resolution = 3995 x 3004
600D sensor resolution
Sensor width = 22.30 mm
Sensor height = 14.90 mm
Effective megapixels = 18.00
Resolution horizontal: X × r = 3464 × 1.5 = 5196
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
Sensor height = 14.90 mm
Effective megapixels = 18.00
r = 22.30/14.90 = 1.5 |
|
Resolution vertical: X = 3464
Sensor resolution = 5196 x 3464
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
X-920 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
600D crop factor
Sensor diagonal in mm = 26.82 mm
Crop factor = | 43.27 | = 1.61 |
26.82 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
X-920 equivalent aperture
Crop factor = 5.62
Aperture = f2.6 - f5.9
35-mm equivalent aperture = (f2.6 - f5.9) × 5.62 = f14.6 - f33.2
Aperture = f2.6 - f5.9
35-mm equivalent aperture = (f2.6 - f5.9) × 5.62 = f14.6 - f33.2
600D equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon 600D, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Canon 600D is 1.61
Crop factor for Canon 600D is 1.61
More comparisons of Olympus X-920:
- Olympus X-920 vs. Panasonic Lumix DMC-FZ45
- Olympus X-920 vs. Olympus Mju 7050
- Olympus X-920 vs. Sony Alpha NEX-F3
- Olympus X-920 vs. Samsung WB150F
- Olympus X-920 vs. Fujifilm FinePix AX550
- Olympus X-920 vs. Casio Exilim EX-ZS6
- Olympus X-920 vs. Sony Cyber-shot DSC-RX100 II
- Olympus X-920 vs. Canon EOS 600D
- Olympus X-920 vs. Canon PowerShot SD780 IS
- Olympus X-920 vs. Canon EOS 1300D
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.