Panasonic Lumix DC-FZ80D vs. Pentax X-5
Comparison
change cameras » | |||||
|
vs |
|
|||
Panasonic Lumix DC-FZ80D | Pentax X-5 | ||||
check price » | check price » |
Megapixels
18.10
16.00
Max. image resolution
4896 x 3672
4608 x 3456
Sensor
Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.03 | : | 1 |
(ratio) | ||
Panasonic Lumix DC-FZ80D | Pentax X-5 |
Surface area:
28.46 mm² | vs | 27.72 mm² |
Difference: 0.74 mm² (3%)
Lumix DC-FZ80D sensor is slightly bigger than X-5 sensor (only 3% difference).
Note: You are comparing sensors of vastly different generations.
There is a gap of 12 years between Panasonic Lumix DC-FZ80D (2024) and
Pentax X-5 (2012).
Twelve years is a huge amount of time,
technology wise, resulting in newer sensor being much more
efficient than the older one.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.15 µm² (9%)
A pixel on Pentax X-5 sensor is approx. 9% bigger than a pixel on Panasonic Lumix DC-FZ80D.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Panasonic Lumix DC-FZ80D
Pentax X-5
Total megapixels
18.90
16.37
Effective megapixels
18.10
16.00
Optical zoom
60x
26x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80-3200 (extends to 6400)
Auto, 100, 200, 400,800, 1600, 3200, 6400
RAW
Manual focus
Normal focus range
30 cm
40 cm
Macro focus range
1 cm
1 cm
Focal length (35mm equiv.)
20 - 1200 mm
22.3 - 580 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f5.9
f3.1 - f5.9
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
4 sec
4 sec
Max. shutter speed
1/2000 sec
1/1500 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
5
8
Screen size
3"
3"
Screen resolution
1,840,000 dots
460,000 dots
Video capture
Max. video resolution
3840x2160 (30p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Rechargeable Lithium-Ion battery pack
4 x AA batteries (Alkaline, Lithium, Nickel and Rechargeable Ni-MH)
Weight
640 g
595 g
Dimensions
130.2 x 94.3 x 125.2 mm
119 x 86 x 107 mm
Year
2024
2012
Choose cameras to compare
Popular comparisons:
- Panasonic Lumix DC-FZ80D vs. Panasonic Lumix DC-FZ80
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot SX70 HS
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot G9 X Mark II
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot Pro70
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot V10
- Panasonic Lumix DC-FZ80D vs. Panasonic Lumix DMC-TZ22
- Panasonic Lumix DC-FZ80D vs. Nikon Coolpix P950
- Panasonic Lumix DC-FZ80D vs. Pentax X-5
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot G5 X Mark II
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot 600
- Panasonic Lumix DC-FZ80D vs. Canon PowerShot G7 X Mark III
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Panasonic Lumix DC-FZ80D diagonal
The diagonal of Lumix DC-FZ80D sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Pentax X-5 diagonal
The diagonal of X-5 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
Lumix DC-FZ80D sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
X-5 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
Lumix DC-FZ80D pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4906 pixels
Sensor resolution width = 4906 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.26 µm |
4906 |
X-5 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 4612 pixels
Sensor resolution width = 4612 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.32 µm |
4612 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
Lumix DC-FZ80D pixel area
Pixel pitch = 1.26 µm
Pixel area = 1.26² = 1.59 µm²
Pixel area = 1.26² = 1.59 µm²
X-5 pixel area
Pixel pitch = 1.32 µm
Pixel area = 1.32² = 1.74 µm²
Pixel area = 1.32² = 1.74 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
Lumix DC-FZ80D pixel density
Sensor resolution width = 4906 pixels
Sensor width = 0.616 cm
Pixel density = (4906 / 0.616)² / 1000000 = 63.43 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4906 / 0.616)² / 1000000 = 63.43 MP/cm²
X-5 pixel density
Sensor resolution width = 4612 pixels
Sensor width = 0.608 cm
Pixel density = (4612 / 0.608)² / 1000000 = 57.54 MP/cm²
Sensor width = 0.608 cm
Pixel density = (4612 / 0.608)² / 1000000 = 57.54 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
Lumix DC-FZ80D sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 18.10
Resolution horizontal: X × r = 3689 × 1.33 = 4906
Resolution vertical: X = 3689
Sensor resolution = 4906 x 3689
Sensor height = 4.62 mm
Effective megapixels = 18.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3689
Sensor resolution = 4906 x 3689
X-5 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 16.00
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Sensor height = 4.56 mm
Effective megapixels = 16.00
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 3468
Sensor resolution = 4612 x 3468
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
Lumix DC-FZ80D crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
X-5 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
Lumix DC-FZ80D equivalent aperture
Crop factor = 5.62
Aperture = f2.8 - f5.9
35-mm equivalent aperture = (f2.8 - f5.9) × 5.62 = f15.7 - f33.2
Aperture = f2.8 - f5.9
35-mm equivalent aperture = (f2.8 - f5.9) × 5.62 = f15.7 - f33.2
X-5 equivalent aperture
Crop factor = 5.69
Aperture = f3.1 - f5.9
35-mm equivalent aperture = (f3.1 - f5.9) × 5.69 = f17.6 - f33.6
Aperture = f3.1 - f5.9
35-mm equivalent aperture = (f3.1 - f5.9) × 5.69 = f17.6 - f33.6
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.