Panasonic Lumix DMC-FP8 vs. Sanyo Xacti VPC-HD2000

Comparison

change cameras »
Lumix DMC-FP8 image
vs
Xacti VPC-HD2000 image
Panasonic Lumix DMC-FP8 Sanyo Xacti VPC-HD2000
check price » check price »
Megapixels
12.10
8.10
Max. image resolution
4000 x 3000
4000 x 3000

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/2.5" (~ 5.75 x 4.32 mm)
Sensor resolution
4011 x 3016
3282 x 2468
Diagonal
7.60 mm
7.19 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1.12 : 1
(ratio)
Panasonic Lumix DMC-FP8 Sanyo Xacti VPC-HD2000
Surface area:
27.72 mm² vs 24.84 mm²
Difference: 2.88 mm² (12%)
FP8 sensor is approx. 1.12x bigger than VPC-HD2000 sensor.
Pixel pitch
1.52 µm
1.75 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.23 µm (15%)
Pixel pitch of VPC-HD2000 is approx. 15% higher than pixel pitch of FP8.
Pixel area
2.31 µm²
3.06 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.75 µm² (32%)
A pixel on Sanyo VPC-HD2000 sensor is approx. 32% bigger than a pixel on Panasonic FP8.
Pixel density
43.52 MP/cm²
32.58 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 10.94 µm (34%)
Panasonic FP8 has approx. 34% higher pixel density than Sanyo VPC-HD2000.
To learn about the accuracy of these numbers, click here.



Specs

Panasonic FP8
Sanyo VPC-HD2000
Crop factor
5.69
6.02
Total megapixels
12.70
Effective megapixels
12.10
Optical zoom
4.6x
Yes
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600 - 6400
Auto, 50, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
30 cm
50 cm
Macro focus range
5 cm
1 cm
Focal length (35mm equiv.)
28 - 128 mm
38 - 380 mm
Aperture priority
No
No
Max. aperture
f3.3 - f5.9
f1.8 - f2.5
Max. aperture (35mm equiv.)
f18.8 - f33.6
f10.8 - f15.1
Metering
Intelligent Multiple
Centre weighted
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
60 sec
Max. shutter speed
1/1300 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
6
Screen size
2.7"
2.7"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
SDHC, Secure Digital
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable battery
Li-Ion
Weight
131 g
268 g
Dimensions
95.7 x 59.6 x 20.2 mm
90.0 x 112.6 x 54.5 mm
Year
2009
2009




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Panasonic FP8 diagonal

The diagonal of FP8 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm

Sanyo VPC-HD2000 diagonal

The diagonal of VPC-HD2000 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

FP8 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²

VPC-HD2000 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

FP8 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4011 pixels
Pixel pitch =   6.08  × 1000  = 1.52 µm
4011

VPC-HD2000 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3282 pixels
Pixel pitch =   5.75  × 1000  = 1.75 µm
3282


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

FP8 pixel area

Pixel pitch = 1.52 µm

Pixel area = 1.52² = 2.31 µm²

VPC-HD2000 pixel area

Pixel pitch = 1.75 µm

Pixel area = 1.75² = 3.06 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

FP8 pixel density

Sensor resolution width = 4011 pixels
Sensor width = 0.608 cm

Pixel density = (4011 / 0.608)² / 1000000 = 43.52 MP/cm²

VPC-HD2000 pixel density

Sensor resolution width = 3282 pixels
Sensor width = 0.575 cm

Pixel density = (3282 / 0.575)² / 1000000 = 32.58 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

FP8 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.10
r = 6.08/4.56 = 1.33
X =  12.10 × 1000000  = 3016
1.33
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016

Sensor resolution = 4011 x 3016

VPC-HD2000 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 8.10
r = 5.75/4.32 = 1.33
X =  8.10 × 1000000  = 2468
1.33
Resolution horizontal: X × r = 2468 × 1.33 = 3282
Resolution vertical: X = 2468

Sensor resolution = 3282 x 2468


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


FP8 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

VPC-HD2000 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

FP8 equivalent aperture

Crop factor = 5.69
Aperture = f3.3 - f5.9

35-mm equivalent aperture = (f3.3 - f5.9) × 5.69 = f18.8 - f33.6

VPC-HD2000 equivalent aperture

Crop factor = 6.02
Aperture = f1.8 - f2.5

35-mm equivalent aperture = (f1.8 - f2.5) × 6.02 = f10.8 - f15.1

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.