Panasonic Lumix DMC-FS42 vs. Canon PowerShot G9 X

Comparison

change cameras »
Lumix DMC-FS42 image
vs
PowerShot G9 X image
Panasonic Lumix DMC-FS42 Canon PowerShot G9 X
check price » check price »
Megapixels
10.10
20.20
Max. image resolution
3648 x 2736
5472 x 3648

Sensor

Sensor type
CCD
CMOS
Sensor size
1/2.5" (~ 5.75 x 4.32 mm)
13.2 x 8.8 mm
Sensor resolution
3665 x 2756
5505 x 3670
Diagonal
7.19 mm
15.86 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 4.68
(ratio)
Panasonic Lumix DMC-FS42 Canon PowerShot G9 X
Surface area:
24.84 mm² vs 116.16 mm²
Difference: 91.32 mm² (368%)
G9 X sensor is approx. 4.68x bigger than FS42 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 6 years between Panasonic FS42 (2009) and Canon G9 X (2015). Six years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.57 µm
2.4 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 0.83 µm (53%)
Pixel pitch of G9 X is approx. 53% higher than pixel pitch of FS42.
Pixel area
2.46 µm²
5.76 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 3.3 µm² (134%)
A pixel on Canon G9 X sensor is approx. 134% bigger than a pixel on Panasonic FS42.
Pixel density
40.63 MP/cm²
17.39 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 23.24 µm (134%)
Panasonic FS42 has approx. 134% higher pixel density than Canon G9 X.
To learn about the accuracy of these numbers, click here.



Specs

Panasonic FS42
Canon G9 X
Crop factor
6.02
2.73
Total megapixels
10.30
20.90
Effective megapixels
10.10
20.20
Optical zoom
4x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1000 (1600-6400 with boost)
Auto, 125-12800
RAW
Manual focus
Normal focus range
50 cm
5 cm
Macro focus range
5 cm
5 cm
Focal length (35mm equiv.)
33 - 132 mm
28 - 84 mm
Aperture priority
No
Yes
Max. aperture
f2.8 - f5.9
f2.0 - f4.9
Max. aperture (35mm equiv.)
f16.9 - f35.5
f5.5 - f13.4
Metering
Multi
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
60 sec
30 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
7
Screen size
2.5"
3"
Screen resolution
230,000 dots
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p)
Storage types
SD/SDHC card, Internal
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable battery
Battery Pack NB-13L
Weight
132 g
209 g
Dimensions
98 x 55 x 22 mm
98.0 x 57.9 x 30.8 mm
Year
2009
2015




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Panasonic FS42 diagonal

The diagonal of FS42 sensor is not 1/2.5 or 0.4" (10.2 mm) as you might expect, but approximately two thirds of that value - 7.19 mm. If you want to know why, see sensor sizes.

w = 5.75 mm
h = 4.32 mm
Diagonal =  5.75² + 4.32²   = 7.19 mm

Canon G9 X diagonal

w = 13.20 mm
h = 8.80 mm
Diagonal =  13.20² + 8.80²   = 15.86 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

FS42 sensor area

Width = 5.75 mm
Height = 4.32 mm

Surface area = 5.75 × 4.32 = 24.84 mm²

G9 X sensor area

Width = 13.20 mm
Height = 8.80 mm

Surface area = 13.20 × 8.80 = 116.16 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

FS42 pixel pitch

Sensor width = 5.75 mm
Sensor resolution width = 3665 pixels
Pixel pitch =   5.75  × 1000  = 1.57 µm
3665

G9 X pixel pitch

Sensor width = 13.20 mm
Sensor resolution width = 5505 pixels
Pixel pitch =   13.20  × 1000  = 2.4 µm
5505


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

FS42 pixel area

Pixel pitch = 1.57 µm

Pixel area = 1.57² = 2.46 µm²

G9 X pixel area

Pixel pitch = 2.4 µm

Pixel area = 2.4² = 5.76 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

FS42 pixel density

Sensor resolution width = 3665 pixels
Sensor width = 0.575 cm

Pixel density = (3665 / 0.575)² / 1000000 = 40.63 MP/cm²

G9 X pixel density

Sensor resolution width = 5505 pixels
Sensor width = 1.32 cm

Pixel density = (5505 / 1.32)² / 1000000 = 17.39 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

FS42 sensor resolution

Sensor width = 5.75 mm
Sensor height = 4.32 mm
Effective megapixels = 10.10
r = 5.75/4.32 = 1.33
X =  10.10 × 1000000  = 2756
1.33
Resolution horizontal: X × r = 2756 × 1.33 = 3665
Resolution vertical: X = 2756

Sensor resolution = 3665 x 2756

G9 X sensor resolution

Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.20
r = 13.20/8.80 = 1.5
X =  20.20 × 1000000  = 3670
1.5
Resolution horizontal: X × r = 3670 × 1.5 = 5505
Resolution vertical: X = 3670

Sensor resolution = 5505 x 3670


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


FS42 crop factor

Sensor diagonal in mm = 7.19 mm
Crop factor =   43.27  = 6.02
7.19

G9 X crop factor

Sensor diagonal in mm = 15.86 mm
Crop factor =   43.27  = 2.73
15.86

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

FS42 equivalent aperture

Crop factor = 6.02
Aperture = f2.8 - f5.9

35-mm equivalent aperture = (f2.8 - f5.9) × 6.02 = f16.9 - f35.5

G9 X equivalent aperture

Crop factor = 2.73
Aperture = f2.0 - f4.9

35-mm equivalent aperture = (f2.0 - f4.9) × 2.73 = f5.5 - f13.4

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.