Panasonic Lumix DMC-FT30 vs. Fujifilm FinePix XP80
Comparison
change cameras » | |||||
|
vs |
|
|||
Panasonic Lumix DMC-FT30 | Fujifilm FinePix XP80 | ||||
check price » | check price » |
Megapixels
16.10
16.40
Max. image resolution
4608 x 3456
4608 x 3456
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/2.3" (~ 6.16 x 4.62 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.03 |
(ratio) | ||
Panasonic Lumix DMC-FT30 | Fujifilm FinePix XP80 |
Surface area:
27.72 mm² | vs | 28.46 mm² |
Difference: 0.74 mm² (3%)
XP80 sensor is slightly bigger than FT30 sensor (only 3% difference).
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.02 µm² (1%)
A pixel on Fujifilm XP80 sensor is approx. 1% bigger than a pixel on Panasonic FT30.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Panasonic FT30
Fujifilm XP80
Total megapixels
16.60
16.76
Effective megapixels
16.10
16.40
Optical zoom
4x
5x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 100, 200, 400, 800, 1600 (High Sensitivity Mode 1600 - 6400)
Auto, 100-3200 (6400 for M/S image size)
RAW
Manual focus
Normal focus range
50 cm
60 cm
Macro focus range
5 cm
9 cm
Focal length (35mm equiv.)
25 - 100 mm
28 - 140 mm
Aperture priority
No
No
Max. aperture
f3.9 - f5.7
f3.9 - f4.9
Metering
Multi
Multi
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
4 sec
Max. shutter speed
1/1300 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
4
7
Screen size
2.7"
2.7"
Screen resolution
230,000 dots
460,000 dots
Video capture
Max. video resolution
1280x720 (30p)
1920x1080 (60p/30p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Li-ion Battery Pack
NP-45S Li-ion battery
Weight
144 g
179 g
Dimensions
103.7 x 58.3 x 19.7 mm
104.1 x 66.5 x 25.9 mm
Year
2015
2015
Choose cameras to compare
Popular comparisons:
- Panasonic Lumix DMC-FT30 vs. Panasonic Lumix DMC-FT5
- Panasonic Lumix DMC-FT30 vs. Panasonic Lumix DMC-FT3
- Panasonic Lumix DMC-FT30 vs. Nikon Coolpix S33
- Panasonic Lumix DMC-FT30 vs. Panasonic Lumix DMC-FT20
- Panasonic Lumix DMC-FT30 vs. Panasonic Lumix DMC-FT4
- Panasonic Lumix DMC-FT30 vs. Fujifilm FinePix XP80
- Panasonic Lumix DMC-FT30 vs. Canon IXUS 180
- Panasonic Lumix DMC-FT30 vs. Nikon Coolpix W100
- Panasonic Lumix DMC-FT30 vs. Sony Cyber-shot DSC-W830
- Panasonic Lumix DMC-FT30 vs. Fujifilm FinePix XP120
- Panasonic Lumix DMC-FT30 vs. Nikon Coolpix AW110
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Panasonic FT30 diagonal
The diagonal of FT30 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Fujifilm XP80 diagonal
The diagonal of XP80 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
FT30 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
XP80 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
FT30 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 4627 pixels
Sensor resolution width = 4627 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.31 µm |
4627 |
XP80 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4671 pixels
Sensor resolution width = 4671 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.32 µm |
4671 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
FT30 pixel area
Pixel pitch = 1.31 µm
Pixel area = 1.31² = 1.72 µm²
Pixel area = 1.31² = 1.72 µm²
XP80 pixel area
Pixel pitch = 1.32 µm
Pixel area = 1.32² = 1.74 µm²
Pixel area = 1.32² = 1.74 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
FT30 pixel density
Sensor resolution width = 4627 pixels
Sensor width = 0.608 cm
Pixel density = (4627 / 0.608)² / 1000000 = 57.92 MP/cm²
Sensor width = 0.608 cm
Pixel density = (4627 / 0.608)² / 1000000 = 57.92 MP/cm²
XP80 pixel density
Sensor resolution width = 4671 pixels
Sensor width = 0.616 cm
Pixel density = (4671 / 0.616)² / 1000000 = 57.5 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4671 / 0.616)² / 1000000 = 57.5 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
FT30 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 16.10
Resolution horizontal: X × r = 3479 × 1.33 = 4627
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
Sensor height = 4.56 mm
Effective megapixels = 16.10
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 3479
Sensor resolution = 4627 x 3479
XP80 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 16.40
Resolution horizontal: X × r = 3512 × 1.33 = 4671
Resolution vertical: X = 3512
Sensor resolution = 4671 x 3512
Sensor height = 4.62 mm
Effective megapixels = 16.40
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3512
Sensor resolution = 4671 x 3512
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
FT30 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
XP80 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
FT30 equivalent aperture
Crop factor = 5.69
Aperture = f3.9 - f5.7
35-mm equivalent aperture = (f3.9 - f5.7) × 5.69 = f22.2 - f32.4
Aperture = f3.9 - f5.7
35-mm equivalent aperture = (f3.9 - f5.7) × 5.69 = f22.2 - f32.4
XP80 equivalent aperture
Crop factor = 5.62
Aperture = f3.9 - f4.9
35-mm equivalent aperture = (f3.9 - f4.9) × 5.62 = f21.9 - f27.5
Aperture = f3.9 - f4.9
35-mm equivalent aperture = (f3.9 - f4.9) × 5.62 = f21.9 - f27.5
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.