Panasonic Lumix DMC-FZH1 vs. Panasonic Lumix DMC-G8

Comparison

change cameras »
Lumix DMC-FZH1 image
vs
Lumix DMC-G8 image
Panasonic Lumix DMC-FZH1 Panasonic Lumix DMC-G8
check price » check price »
Megapixels
20.10
16.00
Max. image resolution
5472 x 3648
4592 x 3448

Sensor

Sensor type
CMOS
CMOS
Sensor size
13.2 x 8.8 mm
Four Thirds (17.3 x 13 mm)
Sensor resolution
5492 x 3661
4612 x 3468
Diagonal
15.86 mm
21.64 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.94
(ratio)
Panasonic Lumix DMC-FZH1 Panasonic Lumix DMC-G8
Surface area:
116.16 mm² vs 224.90 mm²
Difference: 108.74 mm² (94%)
G8 sensor is approx. 1.94x bigger than FZH1 sensor.
Pixel pitch
2.4 µm
3.75 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.35 µm (56%)
Pixel pitch of G8 is approx. 56% higher than pixel pitch of FZH1.
Pixel area
5.76 µm²
14.06 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 8.3 µm² (144%)
A pixel on Panasonic G8 sensor is approx. 144% bigger than a pixel on Panasonic FZH1.
Pixel density
17.31 MP/cm²
7.11 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 10.2 µm (143%)
Panasonic FZH1 has approx. 143% higher pixel density than Panasonic G8.
To learn about the accuracy of these numbers, click here.



Specs

Panasonic FZH1
Panasonic G8
Crop factor
2.73
2
Total megapixels
20.90
16.84
Effective megapixels
20.10
16.00
Optical zoom
20x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 125-12800 (extends to 80-25600)
Auto, 200 - 25600 (extends to 100)
RAW
Manual focus
Normal focus range
30 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
24 - 480 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8 - f4.5
Max. aperture (35mm equiv.)
f7.6 - f12.3
n/a
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
60 sec
60 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
Electronic
Electronic
White balance presets
5
5
Screen size
3"
3"
Screen resolution
1,040,000 dots
1,040,000 dots
Video capture
Max. video resolution
4096x2160 (24p)
3840x2160 (30p/24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-ion battery
Lithium-ion battery
Weight
966 g
505 g
Dimensions
137.6 x 101.9 x 134.7 mm
128.4 x 89 x 74.3 mm
Year
2016
2016




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Panasonic FZH1 diagonal

w = 13.20 mm
h = 8.80 mm
Diagonal =  13.20² + 8.80²   = 15.86 mm

Panasonic G8 diagonal

w = 17.30 mm
h = 13.00 mm
Diagonal =  17.30² + 13.00²   = 21.64 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

FZH1 sensor area

Width = 13.20 mm
Height = 8.80 mm

Surface area = 13.20 × 8.80 = 116.16 mm²

G8 sensor area

Width = 17.30 mm
Height = 13.00 mm

Surface area = 17.30 × 13.00 = 224.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

FZH1 pixel pitch

Sensor width = 13.20 mm
Sensor resolution width = 5492 pixels
Pixel pitch =   13.20  × 1000  = 2.4 µm
5492

G8 pixel pitch

Sensor width = 17.30 mm
Sensor resolution width = 4612 pixels
Pixel pitch =   17.30  × 1000  = 3.75 µm
4612


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

FZH1 pixel area

Pixel pitch = 2.4 µm

Pixel area = 2.4² = 5.76 µm²

G8 pixel area

Pixel pitch = 3.75 µm

Pixel area = 3.75² = 14.06 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

FZH1 pixel density

Sensor resolution width = 5492 pixels
Sensor width = 1.32 cm

Pixel density = (5492 / 1.32)² / 1000000 = 17.31 MP/cm²

G8 pixel density

Sensor resolution width = 4612 pixels
Sensor width = 1.73 cm

Pixel density = (4612 / 1.73)² / 1000000 = 7.11 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

FZH1 sensor resolution

Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 20.10
r = 13.20/8.80 = 1.5
X =  20.10 × 1000000  = 3661
1.5
Resolution horizontal: X × r = 3661 × 1.5 = 5492
Resolution vertical: X = 3661

Sensor resolution = 5492 x 3661

G8 sensor resolution

Sensor width = 17.30 mm
Sensor height = 13.00 mm
Effective megapixels = 16.00
r = 17.30/13.00 = 1.33
X =  16.00 × 1000000  = 3468
1.33
Resolution horizontal: X × r = 3468 × 1.33 = 4612
Resolution vertical: X = 3468

Sensor resolution = 4612 x 3468


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


FZH1 crop factor

Sensor diagonal in mm = 15.86 mm
Crop factor =   43.27  = 2.73
15.86

G8 crop factor

Sensor diagonal in mm = 21.64 mm
Crop factor =   43.27  = 2
21.64

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

FZH1 equivalent aperture

Crop factor = 2.73
Aperture = f2.8 - f4.5

35-mm equivalent aperture = (f2.8 - f4.5) × 2.73 = f7.6 - f12.3

G8 equivalent aperture

Aperture is a lens characteristic, so it's calculated only for fixed lens cameras. If you want to know the equivalent aperture for Panasonic G8, take the aperture of the lens you're using and multiply it with crop factor.

Crop factor for Panasonic G8 is 2

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.