Panasonic Lumix DMC-TZ25 vs. Nikon 1 J1
Comparison
change cameras » | |||||
|
vs |
|
|||
Panasonic Lumix DMC-TZ25 | Nikon 1 J1 | ||||
check price » | check price » |
Megapixels
12.10
10.10
Max. image resolution
4000 x 3000
3872 x 2592
Sensor
Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
13.2 x 8.8 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 4.08 |
(ratio) | ||
Panasonic Lumix DMC-TZ25 | Nikon 1 J1 |
Surface area:
28.46 mm² | vs | 116.16 mm² |
Difference: 87.7 mm² (308%)
1 J1 sensor is approx. 4.08x bigger than TZ25 sensor.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 9.12 µm² (385%)
A pixel on Nikon 1 J1 sensor is approx. 385% bigger than a pixel on Panasonic TZ25.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Panasonic TZ25
Nikon 1 J1
Total megapixels
12.50
12.00
Effective megapixels
12.10
10.10
Optical zoom
16x
Digital zoom
Yes
No
ISO sensitivity
Auto, Hi Auto, (1600-6400), 100, 200, 400, 800, 1600. 3200
100 - 3200, 6400
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
3 cm
Focal length (35mm equiv.)
24 - 384 mm
Aperture priority
Yes
Yes
Max. aperture
f3.3 - f5.9
Metering
Centre weighted, Multi-segment, Spot
Centre weighted, Matrix, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
15 sec
30 sec
Max. shutter speed
1/4000 sec
1/16000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
4
6
Screen size
3"
3"
Screen resolution
460,000 dots
460,000 dots
Video capture
Max. video resolution
Storage types
SDHC, SDXC, Secure Digital
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion rechargeable battery
Lithium-Ion EN-EL20 rechargeable battery
Weight
208 g
234 g
Dimensions
105 x 58 x 33 mm
106 x 61 x 29.8 mm
Year
2012
2011
Choose cameras to compare
Popular comparisons:
- Panasonic Lumix DMC-TZ25 vs. Canon PowerShot SX240 HS
- Panasonic Lumix DMC-TZ25 vs. Panasonic Lumix DMC-TZ30
- Panasonic Lumix DMC-TZ25 vs. Canon PowerShot SX260 HS
- Panasonic Lumix DMC-TZ25 vs. Nikon Coolpix P310
- Panasonic Lumix DMC-TZ25 vs. Nikon Coolpix S9100
- Panasonic Lumix DMC-TZ25 vs. Fujifilm FinePix F660EXR
- Panasonic Lumix DMC-TZ25 vs. Panasonic Lumix DMC-TZ10
- Panasonic Lumix DMC-TZ25 vs. Sony Cyber-shot DSC-WX200
- Panasonic Lumix DMC-TZ25 vs. Casio Exilim EX-H50
- Panasonic Lumix DMC-TZ25 vs. Sony Cyber-shot DSC-HX10V
- Panasonic Lumix DMC-TZ25 vs. Panasonic Lumix DMC-TZ20
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Panasonic TZ25 diagonal
The diagonal of TZ25 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Nikon 1 J1 diagonal
w = 13.20 mm
h = 8.80 mm
h = 8.80 mm
Diagonal = √ | 13.20² + 8.80² | = 15.86 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
TZ25 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
1 J1 sensor area
Width = 13.20 mm
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Height = 8.80 mm
Surface area = 13.20 × 8.80 = 116.16 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
TZ25 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4011 pixels
Sensor resolution width = 4011 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.54 µm |
4011 |
1 J1 pixel pitch
Sensor width = 13.20 mm
Sensor resolution width = 3893 pixels
Sensor resolution width = 3893 pixels
Pixel pitch = | 13.20 | × 1000 | = 3.39 µm |
3893 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
TZ25 pixel area
Pixel pitch = 1.54 µm
Pixel area = 1.54² = 2.37 µm²
Pixel area = 1.54² = 2.37 µm²
1 J1 pixel area
Pixel pitch = 3.39 µm
Pixel area = 3.39² = 11.49 µm²
Pixel area = 3.39² = 11.49 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
TZ25 pixel density
Sensor resolution width = 4011 pixels
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4011 / 0.616)² / 1000000 = 42.4 MP/cm²
1 J1 pixel density
Sensor resolution width = 3893 pixels
Sensor width = 1.32 cm
Pixel density = (3893 / 1.32)² / 1000000 = 8.7 MP/cm²
Sensor width = 1.32 cm
Pixel density = (3893 / 1.32)² / 1000000 = 8.7 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
TZ25 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 12.10
Resolution horizontal: X × r = 3016 × 1.33 = 4011
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
Sensor height = 4.62 mm
Effective megapixels = 12.10
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3016
Sensor resolution = 4011 x 3016
1 J1 sensor resolution
Sensor width = 13.20 mm
Sensor height = 8.80 mm
Effective megapixels = 10.10
Resolution horizontal: X × r = 2595 × 1.5 = 3893
Resolution vertical: X = 2595
Sensor resolution = 3893 x 2595
Sensor height = 8.80 mm
Effective megapixels = 10.10
r = 13.20/8.80 = 1.5 |
|
Resolution vertical: X = 2595
Sensor resolution = 3893 x 2595
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
TZ25 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
1 J1 crop factor
Sensor diagonal in mm = 15.86 mm
Crop factor = | 43.27 | = 2.73 |
15.86 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
TZ25 equivalent aperture
Crop factor = 5.62
Aperture = f3.3 - f5.9
35-mm equivalent aperture = (f3.3 - f5.9) × 5.62 = f18.5 - f33.2
Aperture = f3.3 - f5.9
35-mm equivalent aperture = (f3.3 - f5.9) × 5.62 = f18.5 - f33.2
1 J1 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Nikon 1 J1, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Nikon 1 J1 is 2.73
Crop factor for Nikon 1 J1 is 2.73
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.