Praktica DCZ 14.1 vs. Canon EOS RP
Comparison
change cameras » | |||||
|
vs |
|
|||
Praktica DCZ 14.1 | Canon EOS RP | ||||
check price » | check price » |
Megapixels
14.00
26.20
Max. image resolution
4320 x 3240
6240 x 4160
Sensor
Sensor type
CCD
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
35.9 x 24 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 30.27 |
(ratio) | ||
Praktica DCZ 14.1 | Canon EOS RP |
Surface area:
28.46 mm² | vs | 861.60 mm² |
Difference: 833.14 mm² (2927%)
RP sensor is approx. 30.27x bigger than DCZ 14.1 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 9 years between Praktica DCZ 14.1 (2010) and Canon RP (2019).
Nine years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 30.79 µm² (1509%)
A pixel on Canon RP sensor is approx. 1509% bigger than a pixel on Praktica DCZ 14.1.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Praktica DCZ 14.1
Canon RP
Total megapixels
27.10
Effective megapixels
26.20
Optical zoom
Yes
Digital zoom
Yes
ISO sensitivity
Auto, 50, 100, 200, 400, 800, 1600, 3200, 6400
Auto, 100-40000 (extends to 50-102400)
RAW
Manual focus
Normal focus range
40 cm
Macro focus range
10 cm
Focal length (35mm equiv.)
38 - 113 mm
Aperture priority
No
Yes
Max. aperture
f3.1 - f5.6
Metering
Centre weighted, Matrix, Spot
Evaluative, Partial, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV, 1/2 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
8 sec
30 sec
Max. shutter speed
1/2000 sec
1/4000 sec
Built-in flash
External flash
Viewfinder
None
Electronic
White balance presets
6
6
Screen size
2.7"
3"
Screen resolution
230,400 dots
1,040,000 dots
Video capture
Max. video resolution
3840x2160 (25p/24p)
Storage types
SDHC, Secure Digital
SD/SDHC/SDXC
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
2x AA
LP-E17 lithium-ion battery
Weight
120 g
485 g
Dimensions
92 x 61 x 25 mm
132.5 x 85 x 70 mm
Year
2010
2019
Choose cameras to compare
Popular comparisons:
- Praktica DCZ 14.1 vs. Canon PowerShot A1200
- Praktica DCZ 14.1 vs. Praktica DCZ 14.2
- Praktica DCZ 14.1 vs. Nikon Coolpix L26
- Praktica DCZ 14.1 vs. Canon PowerShot G7 X Mark II
- Praktica DCZ 14.1 vs. Canon EOS RP
- Praktica DCZ 14.1 vs. Canon EOS 77D
- Praktica DCZ 14.1 vs. Canon PowerShot G7 X Mark III
- Praktica DCZ 14.1 vs. Praktica DCZ 5.3
- Praktica DCZ 14.1 vs. Nikon Coolpix L620
- Canon EOS 200D vs. Canon EOS 750D
- Canon EOS 1300D vs. Canon EOS 700D
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Praktica DCZ 14.1 diagonal
The diagonal of DCZ 14.1 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Canon RP diagonal
w = 35.90 mm
h = 24.00 mm
h = 24.00 mm
Diagonal = √ | 35.90² + 24.00² | = 43.18 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
DCZ 14.1 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
RP sensor area
Width = 35.90 mm
Height = 24.00 mm
Surface area = 35.90 × 24.00 = 861.60 mm²
Height = 24.00 mm
Surface area = 35.90 × 24.00 = 861.60 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
DCZ 14.1 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4315 pixels
Sensor resolution width = 4315 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.43 µm |
4315 |
RP pixel pitch
Sensor width = 35.90 mm
Sensor resolution width = 6269 pixels
Sensor resolution width = 6269 pixels
Pixel pitch = | 35.90 | × 1000 | = 5.73 µm |
6269 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
DCZ 14.1 pixel area
Pixel pitch = 1.43 µm
Pixel area = 1.43² = 2.04 µm²
Pixel area = 1.43² = 2.04 µm²
RP pixel area
Pixel pitch = 5.73 µm
Pixel area = 5.73² = 32.83 µm²
Pixel area = 5.73² = 32.83 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
DCZ 14.1 pixel density
Sensor resolution width = 4315 pixels
Sensor width = 0.616 cm
Pixel density = (4315 / 0.616)² / 1000000 = 49.07 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4315 / 0.616)² / 1000000 = 49.07 MP/cm²
RP pixel density
Sensor resolution width = 6269 pixels
Sensor width = 3.59 cm
Pixel density = (6269 / 3.59)² / 1000000 = 3.05 MP/cm²
Sensor width = 3.59 cm
Pixel density = (6269 / 3.59)² / 1000000 = 3.05 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
DCZ 14.1 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.00
Resolution horizontal: X × r = 3244 × 1.33 = 4315
Resolution vertical: X = 3244
Sensor resolution = 4315 x 3244
Sensor height = 4.62 mm
Effective megapixels = 14.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3244
Sensor resolution = 4315 x 3244
RP sensor resolution
Sensor width = 35.90 mm
Sensor height = 24.00 mm
Effective megapixels = 26.20
Resolution horizontal: X × r = 4179 × 1.5 = 6269
Resolution vertical: X = 4179
Sensor resolution = 6269 x 4179
Sensor height = 24.00 mm
Effective megapixels = 26.20
r = 35.90/24.00 = 1.5 |
|
Resolution vertical: X = 4179
Sensor resolution = 6269 x 4179
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
DCZ 14.1 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
RP crop factor
Sensor diagonal in mm = 43.18 mm
Crop factor = | 43.27 | = 1 |
43.18 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
DCZ 14.1 equivalent aperture
Crop factor = 5.62
Aperture = f3.1 - f5.6
35-mm equivalent aperture = (f3.1 - f5.6) × 5.62 = f17.4 - f31.5
Aperture = f3.1 - f5.6
35-mm equivalent aperture = (f3.1 - f5.6) × 5.62 = f17.4 - f31.5
RP equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Canon RP, take the aperture of the lens
you're using and multiply it with crop factor.
Since crop factor for Canon RP is 1, the equivalent aperture is aperture.
Since crop factor for Canon RP is 1, the equivalent aperture is aperture.
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.