Ricoh G900 vs. Pentax Q7
Comparison
change cameras » | |||||
|
vs |
|
|||
Ricoh G900 | Pentax Q7 | ||||
check price » | check price » |
Megapixels
20.00
12.40
Max. image resolution
5184 x 3888
4000 x 3000
Sensor
Sensor type
CMOS
CMOS
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/1.7" (~ 7.53 x 5.64 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.49 |
(ratio) | ||
Ricoh G900 | Pentax Q7 |
Surface area:
28.46 mm² | vs | 42.47 mm² |
Difference: 14.01 mm² (49%)
Q7 sensor is approx. 1.49x bigger than G900 sensor.
Note: You are comparing sensors of very different generations.
There is a gap of 6 years between Ricoh G900 (2019) and Pentax Q7 (2013).
Six years is a lot of time in terms
of technology, meaning newer sensors are overall much more
efficient than the older ones.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 2 µm² (141%)
A pixel on Pentax Q7 sensor is approx. 141% bigger than a pixel on Ricoh G900.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Ricoh G900
Pentax Q7
Total megapixels
12.76
Effective megapixels
20.00
12.40
Optical zoom
5x
Digital zoom
Yes
ISO sensitivity
Auto, 125-25600
Auto, 100 to 12800
RAW
Manual focus
Normal focus range
50 cm
Macro focus range
1 cm
Focal length (35mm equiv.)
28 - 140 mm
Aperture priority
No
Yes
Max. aperture
f3.5 - f5.5
Metering
Multi, Center-weighted, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±3 EV (in 1/3 EV steps)
Shutter priority
No
Yes
Min. shutter speed
1/4 sec
30 sec
Max. shutter speed
1/4000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Optical (optional)
White balance presets
6
9
Screen size
3"
3"
Screen resolution
1,040,000 dots
460,000 dots
Video capture
Max. video resolution
3840x2160 (30p)
Storage types
SD/SDHC/SDXC
SD, SDHC, SDXC and Eye-Fi Card
USB
USB 3.0 (5 GBit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
DB-110 lithium-ion battery
Lithium-ion D-LI68
Weight
247 g
200 g
Dimensions
118.2 x 65.5 x 33.1 mm
101.6 x 58.5 x 33.5 mm
Year
2019
2013
Choose cameras to compare
Popular comparisons:
- Ricoh G900 vs. Ricoh G800
- Ricoh G900 vs. Olympus Tough TG-5
- Ricoh G900 vs. Ricoh WG-6
- Ricoh G900 vs. Olympus Tough TG-6
- Ricoh G900 vs. Ricoh GR III
- Ricoh G900 vs. Ricoh GR Digital 4
- Ricoh G900 vs. Ricoh WG-70
- Ricoh G900 vs. Canon PowerShot G9
- Ricoh G900 vs. Canon PowerShot G7 X Mark III
- Ricoh G900 vs. Canon PowerShot A2300
- Ricoh G900 vs. Canon PowerShot S95
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Ricoh G900 diagonal
The diagonal of G900 sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Pentax Q7 diagonal
The diagonal of Q7 sensor is not 1/1.7 or 0.59" (14.9 mm) as you might expect, but approximately two thirds of
that value - 9.41 mm. If you want to know why, see
sensor sizes.
w = 7.53 mm
h = 5.64 mm
w = 7.53 mm
h = 5.64 mm
Diagonal = √ | 7.53² + 5.64² | = 9.41 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
G900 sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Q7 sensor area
Width = 7.53 mm
Height = 5.64 mm
Surface area = 7.53 × 5.64 = 42.47 mm²
Height = 5.64 mm
Surface area = 7.53 × 5.64 = 42.47 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
G900 pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 5158 pixels
Sensor resolution width = 5158 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.19 µm |
5158 |
Q7 pixel pitch
Sensor width = 7.53 mm
Sensor resolution width = 4076 pixels
Sensor resolution width = 4076 pixels
Pixel pitch = | 7.53 | × 1000 | = 1.85 µm |
4076 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
G900 pixel area
Pixel pitch = 1.19 µm
Pixel area = 1.19² = 1.42 µm²
Pixel area = 1.19² = 1.42 µm²
Q7 pixel area
Pixel pitch = 1.85 µm
Pixel area = 1.85² = 3.42 µm²
Pixel area = 1.85² = 3.42 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
G900 pixel density
Sensor resolution width = 5158 pixels
Sensor width = 0.616 cm
Pixel density = (5158 / 0.616)² / 1000000 = 70.11 MP/cm²
Sensor width = 0.616 cm
Pixel density = (5158 / 0.616)² / 1000000 = 70.11 MP/cm²
Q7 pixel density
Sensor resolution width = 4076 pixels
Sensor width = 0.753 cm
Pixel density = (4076 / 0.753)² / 1000000 = 29.3 MP/cm²
Sensor width = 0.753 cm
Pixel density = (4076 / 0.753)² / 1000000 = 29.3 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
G900 sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 20.00
Resolution horizontal: X × r = 3878 × 1.33 = 5158
Resolution vertical: X = 3878
Sensor resolution = 5158 x 3878
Sensor height = 4.62 mm
Effective megapixels = 20.00
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3878
Sensor resolution = 5158 x 3878
Q7 sensor resolution
Sensor width = 7.53 mm
Sensor height = 5.64 mm
Effective megapixels = 12.40
Resolution horizontal: X × r = 3042 × 1.34 = 4076
Resolution vertical: X = 3042
Sensor resolution = 4076 x 3042
Sensor height = 5.64 mm
Effective megapixels = 12.40
r = 7.53/5.64 = 1.34 |
|
Resolution vertical: X = 3042
Sensor resolution = 4076 x 3042
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
G900 crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
Q7 crop factor
Sensor diagonal in mm = 9.41 mm
Crop factor = | 43.27 | = 4.6 |
9.41 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
G900 equivalent aperture
Crop factor = 5.62
Aperture = f3.5 - f5.5
35-mm equivalent aperture = (f3.5 - f5.5) × 5.62 = f19.7 - f30.9
Aperture = f3.5 - f5.5
35-mm equivalent aperture = (f3.5 - f5.5) × 5.62 = f19.7 - f30.9
Q7 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Pentax Q7, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Pentax Q7 is 4.6
Crop factor for Pentax Q7 is 4.6
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.