Ricoh GR III vs. Fujifilm XT30
Comparison
change cameras »  

vs 


Ricoh GR III  Fujifilm XT30  
check price »  check price » 
Megapixels
24.24
26.10
Max. image resolution
6000 x 4000
6240 x 4160
Sensor
Sensor type
CMOS
CMOS
Sensor size
23.5 x 15.6 mm
23.5 x 15.6 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »

vs 

1  :  1 
(ratio)  
Ricoh GR III  Fujifilm XT30 
Surface area:
366.60 mm²  vs  366.60 mm² 
Difference: 0 mm² (0%)
GR III and XT30 sensors are the same size.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 1.06 µm² (8%)
A pixel on Ricoh GR III sensor is approx. 8% bigger than a pixel on Fujifilm XT30.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Ricoh GR III
Fujifilm XT30
Total megapixels
Effective megapixels
24.24
26.10
Optical zoom
1x
Digital zoom
Yes
ISO sensitivity
Auto, 100102400
Auto, 16012800 (extends to 8051200)
RAW
Manual focus
Normal focus range
10 cm
Macro focus range
6 cm
Focal length (35mm equiv.)
28 mm
Aperture priority
Yes
Yes
Max. aperture
f2.8
Metering
Multi, Centerweighted, Highlightweighted, Spot
Multi, Centerweighted, Average, Spot
Exposure compensation
±5 EV (in 1/3 EV steps)
±5 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
30 sec
30 sec
Max. shutter speed
1/4000 sec
1/4000 sec
Builtin flash
External flash
Viewfinder
Optical (optional)
Electronic
White balance presets
8
7
Screen size
3"
3"
Screen resolution
1,036,800 dots
1,040,000 dots
Video capture
Max. video resolution
1920x1080 (60p/30p/24p)
4096x2160 (30p/25p/24p)
Storage types
SD/SDHC/SDXC
SD/SDHC/SDXC
USB
USB 3.0 (5 GBit/sec)
USB 3.0 (5 GBit/sec)
HDMI
Wireless
GPS
Battery
DB110 lithiumion battery
NPW126S Liion battery
Weight
257 g
383 g
Dimensions
109.4 x 61.9 x 33.2 mm
118.4 x 82.8 x 46.8 mm
Year
2019
2019
Choose cameras to compare
Popular comparisons:
 Ricoh GR III vs. Ricoh GR II
 Ricoh GR III vs. Fujifilm XT30
 Ricoh GR III vs. Ricoh G900
 Ricoh GR III vs. Canon PowerShot G7 X Mark II
 Ricoh GR III vs. Fujifilm XA3
 Ricoh GR III vs. Olympus OMD EM10 III
 Ricoh GR III vs. Leica Q2
 Ricoh GR III vs. Leica DLux 7
 Ricoh GR III vs. Leica CL
 Ricoh GR III vs. Fujifilm X100F
 Ricoh GR III vs. Praktica Luxmedia 10 X3
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √  w² + h² 
Ricoh GR III diagonal
w = 23.50 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √  23.50² + 15.60²  = 28.21 mm 
Fujifilm XT30 diagonal
w = 23.50 mm
h = 15.60 mm
h = 15.60 mm
Diagonal = √  23.50² + 15.60²  = 28.21 mm 
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
GR III sensor area
Width = 23.50 mm
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
XT30 sensor area
Width = 23.50 mm
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Height = 15.60 mm
Surface area = 23.50 × 15.60 = 366.60 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =  sensor width in mm  × 1000 
sensor resolution width in pixels 
GR III pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 6051 pixels
Sensor resolution width = 6051 pixels
Pixel pitch =  23.50  × 1000  = 3.88 µm 
6051 
XT30 pixel pitch
Sensor width = 23.50 mm
Sensor resolution width = 6277 pixels
Sensor resolution width = 6277 pixels
Pixel pitch =  23.50  × 1000  = 3.74 µm 
6277 
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area =  sensor surface area in mm² 
effective megapixels 
GR III pixel area
Pixel pitch = 3.88 µm
Pixel area = 3.88² = 15.05 µm²
Pixel area = 3.88² = 15.05 µm²
XT30 pixel area
Pixel pitch = 3.74 µm
Pixel area = 3.74² = 13.99 µm²
Pixel area = 3.74² = 13.99 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = (  sensor resolution width in pixels  )² / 1000000 
sensor width in cm 
One could also use this formula:
Pixel density =  effective megapixels × 1000000  / 10000 
sensor surface area in mm² 
GR III pixel density
Sensor resolution width = 6051 pixels
Sensor width = 2.35 cm
Pixel density = (6051 / 2.35)² / 1000000 = 6.63 MP/cm²
Sensor width = 2.35 cm
Pixel density = (6051 / 2.35)² / 1000000 = 6.63 MP/cm²
XT30 pixel density
Sensor resolution width = 6277 pixels
Sensor width = 2.35 cm
Pixel density = (6277 / 2.35)² / 1000000 = 7.13 MP/cm²
Sensor width = 2.35 cm
Pixel density = (6277 / 2.35)² / 1000000 = 7.13 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → 

Resolution horizontal: X × r
Resolution vertical: X
GR III sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 24.24
Resolution horizontal: X × r = 4007 × 1.51 = 6051
Resolution vertical: X = 4007
Sensor resolution = 6051 x 4007
Sensor height = 15.60 mm
Effective megapixels = 24.24
r = 23.50/15.60 = 1.51 

Resolution vertical: X = 4007
Sensor resolution = 6051 x 4007
XT30 sensor resolution
Sensor width = 23.50 mm
Sensor height = 15.60 mm
Effective megapixels = 26.10
Resolution horizontal: X × r = 4157 × 1.51 = 6277
Resolution vertical: X = 4157
Sensor resolution = 6277 x 4157
Sensor height = 15.60 mm
Effective megapixels = 26.10
r = 23.50/15.60 = 1.51 

Resolution vertical: X = 4157
Sensor resolution = 6277 x 4157
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =  43.27 mm 
sensor diagonal in mm 
GR III crop factor
Sensor diagonal in mm = 28.21 mm
Crop factor =  43.27  = 1.53 
28.21 
XT30 crop factor
Sensor diagonal in mm = 28.21 mm
Crop factor =  43.27  = 1.53 
28.21 
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
GR III equivalent aperture
Crop factor = 1.53
Aperture = f2.8
35mm equivalent aperture = (f2.8) × 1.53 = f4.3
Aperture = f2.8
35mm equivalent aperture = (f2.8) × 1.53 = f4.3
XT30 equivalent aperture
Aperture is a lens characteristic, so it's calculated only for
fixed lens cameras. If you want to know the equivalent aperture for
Fujifilm XT30, take the aperture of the lens
you're using and multiply it with crop factor.
Crop factor for Fujifilm XT30 is 1.53
Crop factor for Fujifilm XT30 is 1.53
More comparisons of Ricoh GR III:
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.