Samsung PL150 vs. Canon Digital IXUS 400

Comparison

change cameras »
PL150 image
vs
Digital IXUS 400 image
Samsung PL150 Canon Digital IXUS 400
check price » check price »
Megapixels
12.20
4.00
Max. image resolution
4000 x 3000
2272 x 1704

Sensor

Sensor type
CCD
CCD
Sensor size
1/2.33" (~ 6.08 x 4.56 mm)
1/1.8" (~ 7.11 x 5.33 mm)
Sensor resolution
4029 x 3029
2306 x 1734
Diagonal
7.60 mm
8.89 mm
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera. Sensors can vary greatly in size. As a general rule, the bigger the sensor, the better the image quality.

Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.

Learn more about sensor sizes »

Actual sensor size

Note: Actual size is set to screen → change »
vs
1 : 1.37
(ratio)
Samsung PL150 Canon Digital IXUS 400
Surface area:
27.72 mm² vs 37.90 mm²
Difference: 10.18 mm² (37%)
IXUS 400 sensor is approx. 1.37x bigger than PL150 sensor.
Note: You are comparing sensors of very different generations. There is a gap of 7 years between Samsung PL150 (2010) and Canon IXUS 400 (2003). Seven years is a lot of time in terms of technology, meaning newer sensors are overall much more efficient than the older ones.
Pixel pitch
1.51 µm
3.08 µm
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.

The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Difference: 1.57 µm (104%)
Pixel pitch of IXUS 400 is approx. 104% higher than pixel pitch of PL150.
Pixel area
2.28 µm²
9.49 µm²
Pixel or photosite area affects how much light per pixel can be gathered. The larger it is the more light can be collected by a single pixel.

Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 7.21 µm² (316%)
A pixel on Canon IXUS 400 sensor is approx. 316% bigger than a pixel on Samsung PL150.
Pixel density
43.91 MP/cm²
10.52 MP/cm²
Pixel density tells you how many million pixels fit or would fit in one square cm of the sensor.

Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Difference: 33.39 µm (317%)
Samsung PL150 has approx. 317% higher pixel density than Canon IXUS 400.
To learn about the accuracy of these numbers, click here.



Specs

Samsung PL150
Canon IXUS 400
Crop factor
5.69
4.87
Total megapixels
12.40
4.10
Effective megapixels
12.20
4.00
Optical zoom
5x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600, 3200
Auto, 50, 100, 200, 400
RAW
Manual focus
Normal focus range
80 cm
46 cm
Macro focus range
5 cm
5 cm
Focal length (35mm equiv.)
27 - 135 mm
36 - 108 mm
Aperture priority
No
No
Max. aperture
f3.5 - f5.9
f2.8 - f4.9
Max. aperture (35mm equiv.)
f19.9 - f33.6
f13.6 - f23.9
Metering
Centre weighted, Multi-pattern, Spot
Multi, Center-weighted, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
No
No
Min. shutter speed
8 sec
15 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
Optical (tunnel)
White balance presets
6
6
Screen size
3"
1.5"
Screen resolution
230,000 dots
118,000 dots
Video capture
Max. video resolution
Storage types
microSD
Compact Flash (Type I)
USB
USB 2.0 (480 Mbit/sec)
USB 1.0
HDMI
Wireless
GPS
Battery
Lithium-Ion SLB-07B rechargeable battery
Canon NB-L1H 840 mAh Lithium-Ion
Weight
177 g
230 g
Dimensions
99.1 x 58.4 x 19.8 mm
87 x 57 x 28 mm
Year
2010
2003




Choose cameras to compare

vs

Diagonal

Diagonal is calculated by the use of Pythagorean theorem:
Diagonal =  w² + h²
where w = sensor width and h = sensor height

Samsung PL150 diagonal

The diagonal of PL150 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of that value - 7.6 mm. If you want to know why, see sensor sizes.

w = 6.08 mm
h = 4.56 mm
Diagonal =  6.08² + 4.56²   = 7.60 mm

Canon IXUS 400 diagonal

The diagonal of IXUS 400 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of that value - 8.89 mm. If you want to know why, see sensor sizes.

w = 7.11 mm
h = 5.33 mm
Diagonal =  7.11² + 5.33²   = 8.89 mm


Surface area

Surface area is calculated by multiplying the width and the height of a sensor.

PL150 sensor area

Width = 6.08 mm
Height = 4.56 mm

Surface area = 6.08 × 4.56 = 27.72 mm²

IXUS 400 sensor area

Width = 7.11 mm
Height = 5.33 mm

Surface area = 7.11 × 5.33 = 37.90 mm²


Pixel pitch

Pixel pitch is the distance from the center of one pixel to the center of the next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch =   sensor width in mm  × 1000
sensor resolution width in pixels

PL150 pixel pitch

Sensor width = 6.08 mm
Sensor resolution width = 4029 pixels
Pixel pitch =   6.08  × 1000  = 1.51 µm
4029

IXUS 400 pixel pitch

Sensor width = 7.11 mm
Sensor resolution width = 2306 pixels
Pixel pitch =   7.11  × 1000  = 3.08 µm
2306


Pixel area

The area of one pixel can be calculated by simply squaring the pixel pitch:
Pixel area = pixel pitch²

You could also divide sensor surface area with effective megapixels:
Pixel area =   sensor surface area in mm²
effective megapixels

PL150 pixel area

Pixel pitch = 1.51 µm

Pixel area = 1.51² = 2.28 µm²

IXUS 400 pixel area

Pixel pitch = 3.08 µm

Pixel area = 3.08² = 9.49 µm²


Pixel density

Pixel density can be calculated with the following formula:
Pixel density =  ( sensor resolution width in pixels )² / 1000000
sensor width in cm

One could also use this formula:
Pixel density =   effective megapixels × 1000000  / 10000
sensor surface area in mm²

PL150 pixel density

Sensor resolution width = 4029 pixels
Sensor width = 0.608 cm

Pixel density = (4029 / 0.608)² / 1000000 = 43.91 MP/cm²

IXUS 400 pixel density

Sensor resolution width = 2306 pixels
Sensor width = 0.711 cm

Pixel density = (2306 / 0.711)² / 1000000 = 10.52 MP/cm²


Sensor resolution

Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher than maximum (not interpolated) image resolution which is usually stated on camera specifications. Sensor resolution is used in pixel pitch, pixel area, and pixel density formula. For sake of simplicity, we're going to calculate it in 3 stages.

1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.

2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000    →   
X =  effective megapixels × 1000000
r
3. To get sensor resolution we then multiply X with the corresponding ratio:

Resolution horizontal: X × r
Resolution vertical: X

PL150 sensor resolution

Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.20
r = 6.08/4.56 = 1.33
X =  12.20 × 1000000  = 3029
1.33
Resolution horizontal: X × r = 3029 × 1.33 = 4029
Resolution vertical: X = 3029

Sensor resolution = 4029 x 3029

IXUS 400 sensor resolution

Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 4.00
r = 7.11/5.33 = 1.33
X =  4.00 × 1000000  = 1734
1.33
Resolution horizontal: X × r = 1734 × 1.33 = 2306
Resolution vertical: X = 1734

Sensor resolution = 2306 x 1734


Crop factor

Crop factor or focal length multiplier is calculated by dividing the diagonal of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor =   43.27 mm
sensor diagonal in mm


PL150 crop factor

Sensor diagonal in mm = 7.60 mm
Crop factor =   43.27  = 5.69
7.60

IXUS 400 crop factor

Sensor diagonal in mm = 8.89 mm
Crop factor =   43.27  = 4.87
8.89

35 mm equivalent aperture

Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture with crop factor (a.k.a. focal length multiplier).

PL150 equivalent aperture

Crop factor = 5.69
Aperture = f3.5 - f5.9

35-mm equivalent aperture = (f3.5 - f5.9) × 5.69 = f19.9 - f33.6

IXUS 400 equivalent aperture

Crop factor = 4.87
Aperture = f2.8 - f4.9

35-mm equivalent aperture = (f2.8 - f4.9) × 4.87 = f13.6 - f23.9

Enter your screen size (diagonal)

My screen size is  inches



Actual size is currently adjusted to screen.

If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.