Samsung S850 vs. Kodak EasyShare V1073
Comparison
change cameras » | |||||
|
vs |
|
|||
Samsung S850 | Kodak EasyShare V1073 | ||||
check price » | check price » |
Megapixels
8.00
11.10
Max. image resolution
3264 x 2448
3648 x 2736
Sensor
Sensor type
CCD
CCD
Sensor size
1/1.8" (~ 7.11 x 5.33 mm)
1/1.63" (~ 7.85 x 5.89 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1 | : | 1.22 |
(ratio) | ||
Samsung S850 | Kodak EasyShare V1073 |
Surface area:
37.90 mm² | vs | 46.24 mm² |
Difference: 8.34 mm² (22%)
V1073 sensor is approx. 1.22x bigger than S850 sensor.
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.59 µm² (14%)
A pixel on Samsung S850 sensor is approx. 14% bigger than a pixel on Kodak V1073.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Samsung S850
Kodak V1073
Total megapixels
8.30
11.30
Effective megapixels
8.00
11.10
Optical zoom
5x
3x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 50, 100, 200, 400, 800, 1600
Auto, 80, 100, 200, 400, 800, 1600, 3200
RAW
Manual focus
Normal focus range
80 cm
60 cm
Macro focus range
10 cm
13 cm
Focal length (35mm equiv.)
38 - 190 mm
37 - 111 mm
Aperture priority
Yes
No
Max. aperture
f2.8 - f4.4
f3.1 - f5.7
Metering
Multi Spot, Spot
Centre weighted, Multi-pattern, Spot
Exposure compensation
±2 EV (in 1/2 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
No
Min. shutter speed
15 sec
8 sec
Max. shutter speed
1/2000 sec
1/1164 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
6
5
Screen size
2.5"
3"
Screen resolution
230,000 dots
230,000 dots
Video capture
Max. video resolution
Storage types
MultiMedia, Secure Digital
SDHC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
AA (2) batteries (NiMH recommended)
Kodak KLIC-7004 Lithium-Ion,
Weight
172 g
188 g
Dimensions
104 x 63.6 x 24.8 mm
93 x 58 x 21 mm
Year
2007
2008
Choose cameras to compare
Popular comparisons:
- Samsung S850 vs. Kodak EasyShare CX7430
- Samsung S850 vs. Samsung S1050
- Samsung S850 vs. Fujifilm FinePix F47fd
- Samsung S850 vs. Samsung S85
- Samsung S850 vs. Kodak EasyShare C913
- Samsung S850 vs. Olympus XZ-1
- Samsung S850 vs. Nikon Coolpix L23
- Samsung S850 vs. Kodak EasyShare V1073
- Samsung S850 vs. Sony Cyber-shot DSC-H200
- Samsung S850 vs. Canon PowerShot S60
- Samsung S850 vs. Canon PowerShot A590 IS
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Samsung S850 diagonal
The diagonal of S850 sensor is not 1/1.8 or 0.56" (14.1 mm) as you might expect, but approximately two thirds of
that value - 8.89 mm. If you want to know why, see
sensor sizes.
w = 7.11 mm
h = 5.33 mm
w = 7.11 mm
h = 5.33 mm
Diagonal = √ | 7.11² + 5.33² | = 8.89 mm |
Kodak V1073 diagonal
The diagonal of V1073 sensor is not 1/1.63 or 0.61" (15.6 mm) as you might expect, but approximately two thirds of
that value - 9.81 mm. If you want to know why, see
sensor sizes.
w = 7.85 mm
h = 5.89 mm
w = 7.85 mm
h = 5.89 mm
Diagonal = √ | 7.85² + 5.89² | = 9.81 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
S850 sensor area
Width = 7.11 mm
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
Height = 5.33 mm
Surface area = 7.11 × 5.33 = 37.90 mm²
V1073 sensor area
Width = 7.85 mm
Height = 5.89 mm
Surface area = 7.85 × 5.89 = 46.24 mm²
Height = 5.89 mm
Surface area = 7.85 × 5.89 = 46.24 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
S850 pixel pitch
Sensor width = 7.11 mm
Sensor resolution width = 3262 pixels
Sensor resolution width = 3262 pixels
Pixel pitch = | 7.11 | × 1000 | = 2.18 µm |
3262 |
V1073 pixel pitch
Sensor width = 7.85 mm
Sensor resolution width = 3842 pixels
Sensor resolution width = 3842 pixels
Pixel pitch = | 7.85 | × 1000 | = 2.04 µm |
3842 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
S850 pixel area
Pixel pitch = 2.18 µm
Pixel area = 2.18² = 4.75 µm²
Pixel area = 2.18² = 4.75 µm²
V1073 pixel area
Pixel pitch = 2.04 µm
Pixel area = 2.04² = 4.16 µm²
Pixel area = 2.04² = 4.16 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
S850 pixel density
Sensor resolution width = 3262 pixels
Sensor width = 0.711 cm
Pixel density = (3262 / 0.711)² / 1000000 = 21.05 MP/cm²
Sensor width = 0.711 cm
Pixel density = (3262 / 0.711)² / 1000000 = 21.05 MP/cm²
V1073 pixel density
Sensor resolution width = 3842 pixels
Sensor width = 0.785 cm
Pixel density = (3842 / 0.785)² / 1000000 = 23.95 MP/cm²
Sensor width = 0.785 cm
Pixel density = (3842 / 0.785)² / 1000000 = 23.95 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
S850 sensor resolution
Sensor width = 7.11 mm
Sensor height = 5.33 mm
Effective megapixels = 8.00
Resolution horizontal: X × r = 2453 × 1.33 = 3262
Resolution vertical: X = 2453
Sensor resolution = 3262 x 2453
Sensor height = 5.33 mm
Effective megapixels = 8.00
r = 7.11/5.33 = 1.33 |
|
Resolution vertical: X = 2453
Sensor resolution = 3262 x 2453
V1073 sensor resolution
Sensor width = 7.85 mm
Sensor height = 5.89 mm
Effective megapixels = 11.10
Resolution horizontal: X × r = 2889 × 1.33 = 3842
Resolution vertical: X = 2889
Sensor resolution = 3842 x 2889
Sensor height = 5.89 mm
Effective megapixels = 11.10
r = 7.85/5.89 = 1.33 |
|
Resolution vertical: X = 2889
Sensor resolution = 3842 x 2889
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
S850 crop factor
Sensor diagonal in mm = 8.89 mm
Crop factor = | 43.27 | = 4.87 |
8.89 |
V1073 crop factor
Sensor diagonal in mm = 9.81 mm
Crop factor = | 43.27 | = 4.41 |
9.81 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
S850 equivalent aperture
Crop factor = 4.87
Aperture = f2.8 - f4.4
35-mm equivalent aperture = (f2.8 - f4.4) × 4.87 = f13.6 - f21.4
Aperture = f2.8 - f4.4
35-mm equivalent aperture = (f2.8 - f4.4) × 4.87 = f13.6 - f21.4
V1073 equivalent aperture
Crop factor = 4.41
Aperture = f3.1 - f5.7
35-mm equivalent aperture = (f3.1 - f5.7) × 4.41 = f13.7 - f25.1
Aperture = f3.1 - f5.7
35-mm equivalent aperture = (f3.1 - f5.7) × 4.41 = f13.7 - f25.1
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.