Samsung WB150F vs. Samsung WB750
Comparison
change cameras » | |||||
|
vs |
|
|||
Samsung WB150F | Samsung WB750 | ||||
check price » | check price » |
Megapixels
14.20
12.50
Max. image resolution
4608 x 3456
4096 x 3072
Sensor
Sensor type
CCD
CCD
Sensor size
1/2.3" (~ 6.16 x 4.62 mm)
1/2.33" (~ 6.08 x 4.56 mm)
Sensor size comparison
Sensor size is generally a good indicator of the quality of the camera.
Sensors can vary greatly in size. As a general rule, the bigger the
sensor, the better the image quality.
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Bigger sensors are more effective because they have more surface area to capture light. An important factor when comparing digital cameras is also camera generation. Generally, newer sensors will outperform the older.
Learn more about sensor sizes »
Actual sensor size
Note: Actual size is set to screen → change »
|
vs |
|
1.03 | : | 1 |
(ratio) | ||
Samsung WB150F | Samsung WB750 |
Surface area:
28.46 mm² | vs | 27.72 mm² |
Difference: 0.74 mm² (3%)
WB150F sensor is slightly bigger than WB750 sensor (only 3% difference).
Pixel pitch tells you the distance from the center of one pixel (photosite) to the center of the next. It tells you how close the pixels are to each other.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
The bigger the pixel pitch, the further apart they are and the bigger each pixel is. Bigger pixels tend to have better signal to noise ratio and greater dynamic range.
Pixel or photosite area affects how much light per pixel can be gathered.
The larger it is the more light can be collected by a single pixel.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Larger pixels have the potential to collect more photons, resulting in greater dynamic range, while smaller pixels provide higher resolutions (more detail) for a given sensor size.
Relative pixel sizes:
vs
Pixel area difference: 0.2 µm² (10%)
A pixel on Samsung WB750 sensor is approx. 10% bigger than a pixel on Samsung WB150F.
Pixel density tells you how many million pixels fit or would fit in one
square cm of the sensor.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
Higher pixel density means smaller pixels and lower pixel density means larger pixels.
To learn about the accuracy of these numbers,
click here.
Specs
Samsung WB150F
Samsung WB750
Total megapixels
14.60
Effective megapixels
14.20
12.50
Optical zoom
18x
18x
Digital zoom
Yes
Yes
ISO sensitivity
Auto, 80, 100, 200, 400, 800, 1600, 3200
Auto, 80 - 3200
RAW
Manual focus
Normal focus range
80 cm
50 cm
Macro focus range
5 cm
3 cm
Focal length (35mm equiv.)
24 - 432 mm
24 - 432 mm
Aperture priority
Yes
Yes
Max. aperture
f3.2 - f5.8
f3.2 - f5.8
Metering
Multi, Center-weighted, Spot
Centre weighted, Matrix, Spot
Exposure compensation
±2 EV (in 1/3 EV steps)
±2 EV (in 1/3 EV steps)
Shutter priority
Yes
Yes
Min. shutter speed
16 sec
16 sec
Max. shutter speed
1/2000 sec
1/2000 sec
Built-in flash
External flash
Viewfinder
None
None
White balance presets
5
6
Screen size
3"
3"
Screen resolution
460,000 dots
460,000 dots
Video capture
Max. video resolution
1280x720 (30p/15p)
Storage types
SD/SDHC/SDXC
SDHC, SDXC, Secure Digital
USB
USB 2.0 (480 Mbit/sec)
USB 2.0 (480 Mbit/sec)
HDMI
Wireless
GPS
Battery
Lithium-Ion SLB-10A rechargeable battery
Lithium-ion SLB-10A rechargeable battery
Weight
341 g
194 g
Dimensions
122 x 90 x 40 mm
105 x 59 x 25 mm
Year
2012
2011
Choose cameras to compare
Popular comparisons:
- Samsung WB150F vs. Samsung WB250F
- Samsung WB150F vs. Samsung WB200F
- Samsung WB150F vs. Fujifilm FinePix S2980
- Samsung WB150F vs. Samsung WB850F
- Samsung WB150F vs. Sony Cyber-shot DSC-H100
- Samsung WB150F vs. Panasonic Lumix DMC-TZ25
- Samsung WB150F vs. Nikon Coolpix S8200
- Samsung WB150F vs. Nikon Coolpix L610
- Samsung WB150F vs. Nikon Coolpix S9050
- Samsung WB150F vs. Samsung WB210
- Samsung WB150F vs. Samsung WB100
Diagonal
Diagonal is calculated by the use of Pythagorean theorem:
where w = sensor width and h = sensor height
Diagonal = √ | w² + h² |
Samsung WB150F diagonal
The diagonal of WB150F sensor is not 1/2.3 or 0.43" (11 mm) as you might expect, but approximately two thirds of
that value - 7.7 mm. If you want to know why, see
sensor sizes.
w = 6.16 mm
h = 4.62 mm
w = 6.16 mm
h = 4.62 mm
Diagonal = √ | 6.16² + 4.62² | = 7.70 mm |
Samsung WB750 diagonal
The diagonal of WB750 sensor is not 1/2.33 or 0.43" (10.9 mm) as you might expect, but approximately two thirds of
that value - 7.6 mm. If you want to know why, see
sensor sizes.
w = 6.08 mm
h = 4.56 mm
w = 6.08 mm
h = 4.56 mm
Diagonal = √ | 6.08² + 4.56² | = 7.60 mm |
Surface area
Surface area is calculated by multiplying the width and the height of a sensor.
WB150F sensor area
Width = 6.16 mm
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
Height = 4.62 mm
Surface area = 6.16 × 4.62 = 28.46 mm²
WB750 sensor area
Width = 6.08 mm
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Height = 4.56 mm
Surface area = 6.08 × 4.56 = 27.72 mm²
Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the
next measured in micrometers (µm). It can be calculated with the following formula:
Pixel pitch = | sensor width in mm | × 1000 |
sensor resolution width in pixels |
WB150F pixel pitch
Sensor width = 6.16 mm
Sensor resolution width = 4346 pixels
Sensor resolution width = 4346 pixels
Pixel pitch = | 6.16 | × 1000 | = 1.42 µm |
4346 |
WB750 pixel pitch
Sensor width = 6.08 mm
Sensor resolution width = 4078 pixels
Sensor resolution width = 4078 pixels
Pixel pitch = | 6.08 | × 1000 | = 1.49 µm |
4078 |
Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:
You could also divide sensor surface area with effective megapixels:
Pixel area = pixel pitch²
You could also divide sensor surface area with effective megapixels:
Pixel area = | sensor surface area in mm² |
effective megapixels |
WB150F pixel area
Pixel pitch = 1.42 µm
Pixel area = 1.42² = 2.02 µm²
Pixel area = 1.42² = 2.02 µm²
WB750 pixel area
Pixel pitch = 1.49 µm
Pixel area = 1.49² = 2.22 µm²
Pixel area = 1.49² = 2.22 µm²
Pixel density
Pixel density can be calculated with the following formula:
One could also use this formula:
Pixel density = ( | sensor resolution width in pixels | )² / 1000000 |
sensor width in cm |
One could also use this formula:
Pixel density = | effective megapixels × 1000000 | / 10000 |
sensor surface area in mm² |
WB150F pixel density
Sensor resolution width = 4346 pixels
Sensor width = 0.616 cm
Pixel density = (4346 / 0.616)² / 1000000 = 49.78 MP/cm²
Sensor width = 0.616 cm
Pixel density = (4346 / 0.616)² / 1000000 = 49.78 MP/cm²
WB750 pixel density
Sensor resolution width = 4078 pixels
Sensor width = 0.608 cm
Pixel density = (4078 / 0.608)² / 1000000 = 44.99 MP/cm²
Sensor width = 0.608 cm
Pixel density = (4078 / 0.608)² / 1000000 = 44.99 MP/cm²
Sensor resolution
Sensor resolution is calculated from sensor size and effective megapixels. It's slightly higher
than maximum (not interpolated) image resolution which is usually stated on camera specifications.
Sensor resolution is used in pixel pitch, pixel area, and pixel density formula.
For sake of simplicity, we're going to calculate it in 3 stages.
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
3. To get sensor resolution we then multiply X with the corresponding ratio:
Resolution horizontal: X × r
Resolution vertical: X
1. First we need to find the ratio between horizontal and vertical length by dividing the former with the latter (aspect ratio). It's usually 1.33 (4:3) or 1.5 (3:2), but not always.
2. With the ratio (r) known we can calculate the X from the formula below, where X is a vertical number of pixels:
(X × r) × X = effective megapixels × 1000000 → |
|
Resolution horizontal: X × r
Resolution vertical: X
WB150F sensor resolution
Sensor width = 6.16 mm
Sensor height = 4.62 mm
Effective megapixels = 14.20
Resolution horizontal: X × r = 3268 × 1.33 = 4346
Resolution vertical: X = 3268
Sensor resolution = 4346 x 3268
Sensor height = 4.62 mm
Effective megapixels = 14.20
r = 6.16/4.62 = 1.33 |
|
Resolution vertical: X = 3268
Sensor resolution = 4346 x 3268
WB750 sensor resolution
Sensor width = 6.08 mm
Sensor height = 4.56 mm
Effective megapixels = 12.50
Resolution horizontal: X × r = 3066 × 1.33 = 4078
Resolution vertical: X = 3066
Sensor resolution = 4078 x 3066
Sensor height = 4.56 mm
Effective megapixels = 12.50
r = 6.08/4.56 = 1.33 |
|
Resolution vertical: X = 3066
Sensor resolution = 4078 x 3066
Crop factor
Crop factor or focal length multiplier is calculated by dividing the diagonal
of 35 mm film (43.27 mm) with the diagonal of the sensor.
Crop factor = | 43.27 mm |
sensor diagonal in mm |
WB150F crop factor
Sensor diagonal in mm = 7.70 mm
Crop factor = | 43.27 | = 5.62 |
7.70 |
WB750 crop factor
Sensor diagonal in mm = 7.60 mm
Crop factor = | 43.27 | = 5.69 |
7.60 |
35 mm equivalent aperture
Equivalent aperture (in 135 film terms) is calculated by multiplying lens aperture
with crop factor (a.k.a. focal length multiplier).
WB150F equivalent aperture
Crop factor = 5.62
Aperture = f3.2 - f5.8
35-mm equivalent aperture = (f3.2 - f5.8) × 5.62 = f18 - f32.6
Aperture = f3.2 - f5.8
35-mm equivalent aperture = (f3.2 - f5.8) × 5.62 = f18 - f32.6
WB750 equivalent aperture
Crop factor = 5.69
Aperture = f3.2 - f5.8
35-mm equivalent aperture = (f3.2 - f5.8) × 5.69 = f18.2 - f33
Aperture = f3.2 - f5.8
35-mm equivalent aperture = (f3.2 - f5.8) × 5.69 = f18.2 - f33
Enter your screen size (diagonal)
My screen size is
inches
Actual size is currently adjusted to screen.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.
If your screen (phone, tablet, or monitor) is not in diagonal, then the actual size of a sensor won't be shown correctly.